期刊文献+

基于MSP430的便携式哮喘智能监测系统 被引量:5

Portable asthma monitoring system based on MSP430
下载PDF
导出
摘要 为了满足哮喘病患者日常家用监测需求,以及将来为智慧、远程监护哮喘病患者提供关键节点监测技术,提出了一种小型化、便携式、智能哮喘监测系统。该系统设计了Big-Little双传感器前置放大结构结合分量程16 bit采样技术,实现宽范围、高精度监测目的;基于Mallat以及神经网络算法完成信号去噪,并构建电压与气流标定曲线,最终通过生理指标处理算法得到呼气峰值流速(PEF)、一秒钟用力呼气量(FEV1)以及FEV1与用力肺活量比值(FEV1%)关键生理指标。测试结果表明,系统稳定性好,PEF最大相对级差低于5%,PEF最大相对示指误差低于10%。该监测系统具有移动便携、智能、低功耗等应用优势,特别适用于哮喘病患者日常家用监测,对哮喘病患者病情管控与监护具有重要价值。 A portable asthma surveillance system is proposed, for asthma patients ′ daily household monitoring and providing key node monitoring technologies in future telemedicine. The system achieved a wide range of high-precision monitoring through the Big-Little dual sensor preamplifier structure and the sub-range 16 bit sampling technology. It completed the signal denoising and built voltage and air flow calibration curve based on Mallat and neural network algorithm. The peak expiratory flow( PEF), forced expiratory volume in one second( FEV1), forced expiratory volume in one second to forced vital capacity ratio( FEV1 %) were measured by physiological index processing algorithm. The results show that the system works stably, PEF maximum relative difference is less than 5 %, PEF maximum relative indication error is less than 10 %. The system is especially suitable for daily household monitoring and is of great value in the control and monitoring of asthma patients with advantages of portable, intelligence, and low power con-sumption.
出处 《电子技术应用》 北大核心 2017年第9期68-71,75,共5页 Application of Electronic Technique
基金 国家自然科学基金青年科学基金项目(61601188) 广东省自然科学基金(2014A030310372)
关键词 哮喘监测 移动便携 远程医疗 智慧医疗 asthma monitoring mobile portable telemedicine wisdom medical
  • 相关文献

参考文献6

二级参考文献75

  • 1袁礼海,宋建社.小波变换中的信号边界延拓方法研究[J].计算机应用研究,2006,23(3):25-27. 被引量:17
  • 2王光霞,张寅宝,李江.DEM精度评估方法的研究与实践[J].测绘科学,2006,31(3):73-75. 被引量:21
  • 3[1]Specification of the Bluetooth System Version 1.1. 2002
  • 4[2]Data Sheet Class 2 Bluetooth Module LBMx-2002. LG Innotek Co. 2002
  • 5[4]MSP430x43x44x Data Sheet. Texas Instruments,2001
  • 6[5]BlueCoreTM2-Extenral Data Sheet. CSR Corporation, 2003
  • 7Zhou Y.Medical Information Decision and Support System.Beijing:People's Medical Publishing House.2009.
  • 8Zhang QG.Introduction to Artificial Neural Networks.Beijing:China Waterpower Press.2004:25-38.
  • 9Trujillano J,Sarria-Santamera A,Esquerda A,et al.Approach to the methodology of classification and regression trees.Gac Sanit.2008;22(1):65-72.
  • 10Mo CM,Ni ZZ,Gao FQ.The Modeling and Application of Regression Trees.Zhonghua Yufang Yixue Zazhi.2002;36(5):346-347.

共引文献33

同被引文献60

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部