5KHAN N, GOLDBERG D E, PELIKAN M. Multi-objective Bayesian optimization algorithm [ R ]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2002.
6OKABE T, JIN Y, SENDHOFF B, et al. Voronoi-based es- timation of distribution algorithm for multi-objective optimi- zation [ C ]//Proceedings of the 2004 Congress on Evolution- ary Computation. Piscataway, USA, 2004: 1594-1601.
7SASTRY K, PELIKAN M, GOLDBERG D E. Decompos- able problems, niching, and scalability of muhiobjective es- timation of distribution algorithms[ R]. Urbana, USA : Uni- versity of Illinois at Urbana-Champaign, 2005.
8ZHANG Qingfu, ZHOU Aimin, JIN Yaochu. RM-MEDA : a regularity model-based multiobjective estimation of distribu- tion algorithm[ J]. IEEE Transactions on Evolutionary Com- putation, 2008, 12( 1 ) : 41-63.
9STORN R, PRICE K. Differential evolution--a simple and efficien! adaptive scheme for global optimization over contin- uous spaces[ J ]. Journal of Global Optimization, 1997, 11 (4) : 341-359.
10ROBIC T, FILIPIC B. DEMO: differential evolution for multiobjective optimization[ C ]//Proceedings of the 3rd In- ternational Conference on Evolutionary Multi-Criterion Opti- mization. Berlin, Germany: Springer, 2005: 520-533.