期刊文献+

填充层状电介质矩形波导中的电磁波

Electromagnetic Ware in a Rectangular Wave Guide with Dielectric Tiers
下载PDF
导出
摘要 令向量位的方向垂直于介质分界面 ,由Maxwell方程可以得到Ey和Hy模的场分量按本征函数系的展开式 .为了得到本征函数的本征值 ,必须导出在Ey模和Hy模中的本值方程 .在各层介质中kx有相同值 ,kz亦然 ,因此K2 =k2 x+k2 z也具有相同的值 .kx可以直接由边界条件得到 ,而各层介质中的K必须通过边界条件与连续性条件求解 .在由场分量的边界条件和连续性条件导出的线性方程组中将本征函数的系数视为未知数 ,令方程组具有不平凡解 ,得到ky的本征方程 ,利用k2i=K2 +k2 yi(i=1,2 ,3) ,再将此方程转换为本征方程 . Let the direction of vector potential to be vertical to the dividing face of dielectric tiers.From Maxwell's equations,the expansion equations of the field comonents with orthogonal function system of E ymode and H ymode can be obtained .ln order to obtain the eigenvalue of the eigenfunctions,the eigenvalue equations in E ymode and H ymode must be derived .The eigen value k x in each dielectric tier has the same value as in another dielectric tier and the same as eigenvalue k z.For this reason,K 2=k 2 x+k 2 z in each dielectric tier has the same value as in another dielectric tier too.K xcan obtained from boundary conditions,but the eigenvalue k yin each dielectric tier must be found with boundary conditions and continuity conditions.When the coefficients in the linear equation system,which are derived with boundary conditions and continuity conditions,are taken as unknown numbers and the equation system is set to have nonordinary solutions, we can obtain k y's eigenvalue equations in E ymode and H ymode.After that,those equations can be changed into the eigenvalue equations of k y by using the relation k 2 i=K 2+k 2 yi(i=1,2,3).ln addition,the normalized coefficients of eigenfunctions are obtained with orthogonal property.
作者 居国正
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2002年第5期641-644,共4页 Journal of Tianjin University:Science and Technology
关键词 层状电介质 矩形波导 电磁波 多层介质问题 本征值 本征函数 传输特性 multiple tiers dielectric problem eigenivalue eigenfunction.
  • 相关文献

参考文献4

二级参考文献29

  • 1刘飞.益生菌和美沙拉嗪治疗炎症性肠病的价值分析[J].世界最新医学信息文摘,2020(23):112-113. 被引量:3
  • 2俞集辉,孟庆福.线性有限元计算的外推插值法[J].电工技术学报,1995,10(3):37-42. 被引量:6
  • 3吕涛.本征值问题有限元近拟解的外推方法[J].系统科学与数学,1984,4(4):294-302.
  • 4许善驾.波导有本征值问题的有限元分析[J].电子学通讯,1982,4(4):222-234.
  • 5[1]M.Suzuki,M.koshiba.Finite-element analysis of discontinuity probl ems in a planar dielectric waveguide. Radio Sci.,1982,17(1):85~91.
  • 6[2]M.Koshiba,K.Ooishi, T. Miki, M.Suzuki. Finite-element analysis of discontinuities in a dielectric slab waveguide bounded by parallel plates, Elec tron. Lett., 1982,18(1):33~37.
  • 7[3]M.Koshiba, T.Miki, K. Ooishi,M.Suzuki. On finite-element solution s of the discontinuity problems in a bounded dielectric slab waveguide. Trans. IECE Jpn. E66,1983:250~254.
  • 8[4]K.Hirayama, M.Koshiba. Numberical analysis of arbitr arily shaped discontinuities between planar dielectric waveguides with different thicknesses. IEEE Trans. MTT, 1990, 38(3):260~264.
  • 9[5]K.Hirayama,M.Koshiba.Analysis of discontinuities in an open dielectric slab waveguide by combination of finite and boundary elements . IEEE Trans. MTT,1989,37(4):761~768.
  • 10[6]K.Hirayama,M.Koshiba. Analysis of discontinuities in an asymmetric dielectric slab waveguide by combination of finite and boundary e lements. IEEE. Trans. MTT,1992,40(4):686~691.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部