期刊文献+

幽门螺杆菌毒力因子与胃癌前变化的研究 被引量:4

Study of virulent factor of Helicobacter pylori with the gastric precancerous changes
下载PDF
导出
摘要 目的 研究胃癌前状态和癌前病变伴幽门螺杆菌 (Hp)感染的患者 ,其Hp毒力因子细胞毒素相关蛋白A(CagA)、空泡细胞毒素VacA的表达。方法 常规胃镜检查和活检取得的胃黏膜标本做组织病理检查 ,根据所得结果 ,慢性萎缩性胃炎、胃息肉、残胃、胃溃疡、完全型 /不完全型、大肠 /小肠化生为癌前状态组 (82例 ) ,胃黏膜上皮异型增生为癌前病变组 (2 5例 ) ,单纯慢性浅表性胃炎伴Hp感染患者为对照组 (3 0例 )。用蛋白印迹法 (WesternBlot)测定Hp的CagA、VacA因子。结果 癌前状态组和癌前病变组中 ,CagA、VacA因子的检出率显著高于对照组 (P <0 .0 5 )。结论 幽门螺杆菌CagA。 Objective To investigate the correlation of virulent factors CagA,VacA of Helicobacter pylori and the gastric precancerous lesion. Methods All patients were performed routine gastroscopy and biopsy, 82 patients with gastric precancerous condition and Helicobacter pylori infection taken with as a group consisted of chronic atrophic gastritis(CAG), gastric polyp, gastric remnant, gastric ulcer(GU) and complete/ incomplete colonic/smallintestinal metaplasia(IM). 25 patients with gastric precancerous lesions(dysplasia) and Helicobacter pylori infection formed another group, and 30 patients with chronic superficial gastritis and Helicobacter pylori were assumed in the control group. The serum of Helicobacter pylori CagA, VacA proteins were analyzed by Western blot. Results In the groups of gastric precancerous condition and gastric precancerous lesion, positive CagA, VacA reaction was significantly greater than those of the control( P <0.05). Conclusion CagA, VacA factor bears a close relationship with the gastric precancerous condition and gastric precancerous lesions.
出处 《上海医学》 CAS CSCD 北大核心 2002年第9期572-574,共3页 Shanghai Medical Journal
关键词 毒力因子 胃癌 癌前状态 癌前病变 幽门螺杆菌 细胞毒素相关蛋白A 空泡细胞毒素 Gastric precancerous condition Gastric precancerous lesions Helicobacter pylori CagA serology VacA serology
  • 相关文献

参考文献3

  • 1叶任高.内科学,第5版[M].北京:人民卫生出版社,2000.731.
  • 2萧树东.胃肠病学,第1版[M].上海:上海科学技术出版社,2001.617-629.
  • 3赵景涛 刘玉兰.消化内科学,第1版[M].北京:中国协和医科大学出版社,2000.39-40.

共引文献64

同被引文献29

  • 1KOHONEN T, BARNA G, CHRISLEY R. Statistical pattern recognition with neural networks: benchmarking studies[C]//IEEE International Conference on Neural Networks, San Diego, USA, 1988: 61-68.
  • 2FOO S, STUART G, HARVEY B, et al. Neural Network-based EKG Pattern Recognition [J]. Engineering Applications of Artificial Intelligence, 2002, 15(3-4): 253-260.
  • 3AVCI E. A new optimum feature extraction and classification method for speaker recognition: GWPNN[J]. Expert Systems with Applications, 2007, 32(2): 485-498.
  • 4UBEYLI E. Decision support systems for time-varying biomedical signals: EEG signals classification[J]. Expert Systems with Applications, 2009, 36(2): 2 275-2 284.
  • 5UYAR M, YILDIRIM S, GENCOGLU M T. An effective wavelet-based feature extraction method for classification of power quality disturbance signals[J]. Electric Power Systems Research, 2008, 78(10): 1 747-1 755.
  • 6WU J D, HSU C C, WU G Z. Fault gear identification and classification using discrete wavelet transform and adaptive neuro-fuzzy inference[J]. Expert Systems with Applications, 2009, 36(3): 6 244-6 255.
  • 7MATLAB R2008a Version Wavelet Toolbox[CP]. MathWorks Company, 2008.
  • 8CRISTIANINI N, SHAWE-TAYLOR J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [M]. UK: Cambridge University Press, 2000.
  • 9HORNG M H. Multi-class support vector machine for classification of the ultrasonic images of supraspinatus[J]. Expert Systems with Applications, 2009, 36(4): 8 124-8 133.
  • 10BURGES C J. A tutorial on support vector machines for pattern recognition[J]. Data Mining Knowledge Diseovery, 1998, 2(1): 121-167.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部