期刊文献+

三种群Lotka-Volterra捕食系统多个极限环的存在性 被引量:2

A Three Species Lotka-Volterra Prey-Predator System with Multiple Limit Cycles
下载PDF
导出
摘要 通过降维把高维系统平衡点的稳定性及极限环的构造用低维系统来判定和实现,给出了一个三种群Lotka-Volterra捕食系统具有两个小扰动极限环的例子。 Based on the Center Manifold Theorem and the Liapunov method, an example of a three species Lotka-V'olferra prey-predator system with two samll amplitude limit cycles is constructed.
作者 罗勇 陆征一
出处 《生物数学学报》 CSCD 2002年第3期293-298,共6页 Journal of Biomathematics
基金 国家重点基础研究发展规划资助项目(G1998030600)
关键词 Lotka-Volterra捕食系统 极限环 存在性 中心流形 Lotka-Volterra system Prey-Predator Center mamfold Limit cycles
  • 相关文献

参考文献9

  • 1Cart J. Applications of Center Manifold Theory[M]. New York: Springer-Verlag, 1981.
  • 2Coste J, Peyraud J, Coullet P. Asymptotic behaviour in the dynamics of competing species[J]. SIAM J Appl Math. 1979, 36. 516-542.
  • 3Hirsch M W. Systems of differential equations which are competitive or cooperative: Ⅲ[J]. Competing species, Nonlinearity, 1988, 1:51-71.
  • 4Hofbauer J. On the occurrence of limit cycles in the Volterra-Lotka equation[J]. Nonlinear Analysis, 1981.5:1003-1007.
  • 5Hofbauer J, So J W. Multiple limit cycles for three dimensional Lotka-Volterra equationsp[J]. Appl Math Lett, 1994, 7:65-70.
  • 6May R M, Leonard W. Nonlinear aspects of competition between three species[J]. SIAM J Appl Math, 1975,29:243-252.
  • 7Roy A B. Solimano F. Global stablity and oscillations in classical Lotka-Volterra loops[J]. Bull Math Biol.1982, 44:570-585.
  • 8Xiao D, Li W. Limit cycles for the competitive three dinensional Lotka-Volterra system[J]. J Diff Eqns.2000, 164:1-15.
  • 9Zeeman M L. Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems[J]. Dynamics and Stability of Systems, 1993, 8, 189-217.

同被引文献34

  • 1刘立,陆征一,王东明.THE STRUCTURE OF LASALLE’S INVARIANT SET FOR LOTKA-VOLTERRA SYSTEMS[J].Science China Mathematics,1991,34(7):783-790. 被引量:4
  • 2Volterra V. Variations and Fluctuations in the Numbers of Coexisting Animal Species. Berlin: Springer-Verlag, 1928.
  • 3Lotka A J. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc., 1920, 42: 1595-1598.
  • 4Scudo F and Ziegler J. The Golden Age of Theoretical Ecology. New York, Springer, 1978.
  • 5Peschel M, Mende W. The Predator-Prey Models. New York: Springer, 1986.
  • 6Hofbauer J and Sigmund K. Evolution Games and Population Dynamical Systems. Cambridge University Press, Cambridge, 1998.
  • 7Bomze I M. Lotka-Volterra equation and replicator dynamics: New issues in classification. Biol. Cybern., 1995, 72: 447-453.
  • 8Bomze I M. Lotka-Volterra equations and replicator dynamics: A two dimensional classification. Biol. Cybern., 1983, 48: 201-211.
  • 9Jansen W. A permanence theorem for replicator and Lotka-Volterra systems. J. Math. Biol., 1987, 25: 411-422.
  • 10Butler G and Waltman P. Persistence in dynamical systems. J. Diff. Eqns., 1986, 63: 255-263.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部