期刊文献+

结构安定分析的Galerkin边界元方法 被引量:2

SHAKEDOWN ANALYSIS OF STRUCTURES BY SYMMETRIC GALERKIN BOUNDARY ELEMENT METHOD
下载PDF
导出
摘要 基于Melan静力安定定理,利用Galerkin边界元方法建立了多组交变载荷作用下结构安定分析的下限计算格式.在给定载荷域的载荷角点所对应载荷作用下,采用Galerkin边界元法计算相应的虚拟弹性应力场,并且利用结构在Galerkin边界元弹塑性增量计算中同一增量步中不同迭代步之间的应力差作为自平衡应力场的基矢量,通过这些基矢量的线性组合构造了自平衡应力场,大大降低了所形成的数学规划问题的未知变量数.并通过复合形法对非线性规划问题直接进行求解,得到了结构在交变载荷作用下的下限安定乘子.计算结果表明,所采用的方法具有较高的精度和计算效率. The computational formulation of lower bound shakedown analysis of structures under the action of a group of variable loads is established by using symmetric Galerkin boundary element method (SGBEM) in this paper. Because of the adoption of analytical integral scheme and symmetric coefficient matrix, the SGBEM has higher computational precision and efficiency. Especially the stresses directly obtained by the integral formulation of internal points have higher precision than those calculated through displacement finite element method. The self-equilibrium stress field is constructed by linear combination of several basic vectors, which are the stress differences between different iteration steps at the same incremental step using the traditional elasto-plastic incremental method. Because of the adoption of reduced basis technique, the dimensions of the resulting mathematic programming decreased considerably. The lower bound shakedown load mul-tipler of structure is obtained by using the Complex method to solve the nonlinear programming directly. The Complex method represents a cost-effective, numerically stable and reliable tool for the mathematical programming problem of shakedown analysis. The whole procedure turns out to be significantly cost-effective with respect to other approaches, particularly with respect to evolutive step-by-step analysis by commercial finite element codes. The numerical results of the solution procedure adopted herein appear to be satisfactory and rather insensitive to the choice of the initial complex configurations and load increments used to create basic self-equilibrium stress vectors. The computational examples illustrate the validation of the present method.
出处 《力学学报》 EI CSCD 北大核心 2002年第5期726-734,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(19902007) 全国优秀博士论文专项资金(200025)资助项目
关键词 结构安定分析 Galerkin边界元 自平衡应力场 非线性规划 交变荷载 塑性力学 工程结构 SGBEM, shakedown analysis, self-equilibrium stress field, non-linear programming,complex method
  • 相关文献

参考文献11

  • 1Liu Y, Cen Z, Xu B. A numerical method for plastic limit analysis of 3D structure. Int J Solid & Structures,1995, 32(12): 1645~1658
  • 2刘应华,岑章志,徐秉业.含缺陷结构的塑性极限分析[J].固体力学学报,1999,20(3):211-218. 被引量:9
  • 3Maier G, Polizzotto C. On shakedown analysis by boundary elements. In: Verba Volant, Scripta Manent (C.A. Massonet Anniversary Volume), Liege, 1984. 265~277
  • 4Panzeca T. Shakedown and limit analysis by the boundary integral equation method. Eur J Mech, A/Solids,1992, 11(5): 685~699
  • 5Martin JB. Plasticity: Foundation and General Results. Cambridge, Mass.: MIT Press, 1975
  • 6Sawczuk A. Shakedown analysis of elastic-plastic structures. Nuclear Engineering and Design, 1974, 28:121~136
  • 7Maier G, Polizzotto C. A Galerkin approach to boundary element elastoplastic analysis. Comp Mech Engng,1987, 60:175~194
  • 8Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin boundary element methods. Appl Mech Rev, 1998,51(11): 669~704
  • 9岑章志,徐秉业.Galerkin边界元法用于弹塑性分析的准高次元方法[J].力学学报,1997,29(6):745-750. 被引量:1
  • 10Johannes Grob-Weege. On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int J Mech Sci, 1997, 39(4): 417~433

二级参考文献6

  • 1刘清,工程力学,1994年,增刊,283页
  • 2余德浩,自然边界元方法的数学理论,1992年
  • 3刘清,第四届全国工程中的边界元法会议论文集,1994年
  • 4Chen H F,Int J Pres Ves Piping,1997年,71卷,47页
  • 5Mackenzie D,J Pressure Vessel Technol,1993年,115卷,27页
  • 6Qian L,Proc ASME Pressure Vessel Piping Conf,1990年,87卷,47页

共引文献8

同被引文献35

  • 1冯西桥,刘信声.影响弹塑性结构安定性的各种因素[J].力学进展,1993,23(2):214-222. 被引量:10
  • 2张明焕,杨海元.结构安定分析方法研究[J].应用力学学报,1994,11(4):83-90. 被引量:22
  • 3STEIN E, ZHANG G. Shakedown with nonlinear strain-hardening including structural computation using finite element method[J]. International Journal of Plasticity, 1992,8 : 1-31.
  • 4GROSS-WEEGE J. On the numerical assessment of the safety factor of elasto-plastic structures Under variable loading[J]. International Journal of Mechanical Sciences, 1997,39(4) : 417-433.
  • 5LIU Y H, ZHANG X F, CEN Z Z. Lower bound shakedown analysis by symmetric Galerkin boundary element method[J]. International Journal of Plasticity, 2005,21 : 21-42.
  • 6BELYTSCHKO T, KRONGAUZ Y, ORGAN D. Meshless methods: An overview and recent developments [J]. Computer Methods in Applied Mechanics and Engineering, 1996,139: 3-47.
  • 7BELYTSCHKO T, LU Y Y, GU L. Element free Galerkin method[J]. International Journal for Numerical Method in Engineering, 1994,37 : 229-256.
  • 8LU Y Y, BELYTSCHKO T, GU L. A new implementation of the element-free Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 1994,113 : 397-414.
  • 9CARVELLI V, CEN Zhang-zhi, LIU Ying-hua. Shakedown analysis of defective pressure vessels by a kinematic approach[J]. Archive of Applied Mechanics, 1999,69: 751-764.
  • 10唐纪晔,钱令希.极限分析和安定分析的并行算法[J].计算力学学报,1997,14(2):143-149. 被引量:4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部