期刊文献+

一种基于位错机制的动态应变时效模型 被引量:13

A DISLOCATION-MECHANICS-BASED CONSTITUTIVE MODEL FOR DYNAMIC STRAIN AGING
下载PDF
导出
摘要 动态应变时效是由位错与溶质原子的相互作用引起的 ,只考虑位错与位错芯内的溶质原子 (位错芯气团 )的相互作用 ,在位错热激活运动机制的Zerilli Armstrong热粘塑性本构模型的基础上 ,加以改进 ,并加入位错和位错芯气团的相互作用的影响 ,建立了一种可定量描写动态应变时效现象的本构模型 .所得到的本构模型以Zerilli Armstrong模型为基础 ,不仅可以描写动态应变时效现象 ,还可以描写金属在很大温度 (77K - 10 0 0K)和应变率 (10 -4 - 10 4 s-1)范围内的力学行为 .本构模型对钽的拟合和预测与实验结果有较好的吻合 . Dynamic strain aging is caused by the interaction between the moving dislocations and the mobile solute atoms. Only considered the interaction between moving dislocations and mobile solute atoms in dislocation core area (core atmosphere). To get the constitutive relation which can describe the dynamic strain aging phenomenon, improved the Zerilli-Armstrong dislocation-mechanics-based thermal viscoplastic constitutive relation, and added the effect of the interaction between the moving dislocations and core atmosphere. Because the constitutive relation established is based on the Zerilli-Armstrong relation, it can describe not only the dynamic strain aging phenomenon, but also the mechanical behavior of metals in a broad range of temperature (77 K~1000 K) and strain rate (10 -4~10 4 s -1). The prediction for tantalum fits well with the experimental data.
出处 《固体力学学报》 CAS CSCD 北大核心 2002年第3期249-256,共8页 Chinese Journal of Solid Mechanics
基金 中国科学院回国工作基金资助
关键词 位错机制 动态应变时效模型 溶质原子 位错芯气团 材料力学 dynamic strain aging, solute atoms, core atmosphere
  • 相关文献

参考文献10

  • 1[1]Cheng JingYi, Nemat-Nasser S. A model for experimentally-observed high-strain-rate dynamic strain aging in titanium. Acta Mater, 2000, 48:3131~3144
  • 2[2]Mulford R A, Kocks U F. New observations on the mechanisms of dynamic strain aging and of Jerky flow. Acta Metallurgica, 1979, 27:1125~1134
  • 3[3]Beukel A Van Den, Kocks U F. The strain dependence of static and dynamic strain aging. Acta Metallurgica, 1982, 30:1027~1034
  • 4[4]Zerilli Frank J, Armstrong Ronald W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J Appl Phys, 1987, 61(5):1816~1825
  • 5[5]Zerilli Frank J, Armstrong Ronald W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. J Appl Phys, 1990, 68(4):1580~1591
  • 6[6]Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Mater, 1997, 45:907~919
  • 7[7]Hoge K G, Mukherjee A K. The temperature and strain rate dependence of the flow stress of tantalum. Journal of Materials Science, 1977, 12:1666~1672
  • 8[8]Kocks U F. Kinetics of solution hardening. Metallurgical Transactions A,1985, 16A:2109~2129
  • 9[9]McCormick P G. A model for the Portevin-Le chatelier effect in substitutional alloys. Acta Metallurgica, 1972, 20:351~354
  • 10[10]Ke Ting-Sui. Internal friction and precipitation from the solid solution of N in tantalum. Physical Review, 1948, 74:914~916.

同被引文献129

引证文献13

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部