期刊文献+

实验围栏内越冬眼镜蛇体温调节和低温耐受性的无线电遥测 被引量:3

RADIOTELEMETRY OF THERMOREGULATION AND THERMALTOLERANCE ON CHINESE COBRAS (NAJA ATRA) OVERWINTERING IN A LABORATORY ENCLOSURE~*
下载PDF
导出
摘要 用SB 2T内置热敏无线电发射器、HOBO和TINYTALK数据记录块等电子设备研究实验室围栏内越冬眼镜蛇 (Najaatra)的体温调节和低温耐受性。围栏内总平均气温 (10 6℃ )与总平均巢温 (10 9℃ )无显著差异 ,但气温变化幅度 (- 2 0~ 37 4℃ )大于巢温变化幅度 (6 5~ 14 5℃ )。眼镜蛇体温变化幅度 (3 4~34 1℃ )介于气温和巢温的变化幅度之间 ,平均体温的个体间差异显著 ,总平均体温 (15 0℃ )大于平均气温和平均巢温。最低体温的平均值为 8 9℃ ,与经验估测的眼镜蛇低温耐受极限 (9 0℃ )相近。白天气温高于15℃时能见到巢外调温个体 ,其体温记录次数约占处于此条件下的个体总体温记录次数的 2 9%。巢外调温个体的体温高于处于晚间和白天 15℃以下气温个体的体温 ,亦高于处于白天 15℃以上气温但不进行巢外调温个体的体温。处于白天 15℃以下气温个体的体温低于晚间个体的体温。处于白天 15℃以上气温但不进行巢外调温个体的体温与处于晚间和白天 15℃以下气温个体的体温无显著差异。处于晚间和白天 15℃以下气温个体的体温与气温呈显著的正相关 ,表明眼镜蛇在低温和缺乏热斑块的环境中是体温调节的顺应者。气温高于 15℃时 ,进行巢外调温和不进行巢外调温个体的体温均与气温无关 ,表明眼镜蛇在气温? We used commercially available electronic temperature recording devices, temperature sensitive radiotransmitters (Holohil, SB 2T) and HOBO and TINYTALK dataloggers with an internal temperature sensor, to study thermoregulation and thermal tolerance in adult Chinese cobras ( Naja atra) overwintering in an enclosure built in our laboratory. After being implanted with radiotransmitters according to procedures outlined by Reinert (1992), cobras were released into the enclosure. We received signals (pulses) from each radiotransmitter at 3 hour intervals from 06:00 to 24:00 h, and visually checked the number of individuals thermoregulating outside the nest during the day. Air and nest temperatures were automatically recorded at 1 2 hour intervals over a 24 hour period, using HOBO and TINYTALK dataloggers, respectively. The overall mean air temperature in the enclosure did not differ from the overall mean nest temperature, but air temperatures varied over a much wider range (-2 0 to 37 4 ℃) than nest temperatures (6 5 to 14 5 ℃). Body temperatures varied from 3 4 to 34 1 ℃, a wider range than that of nest temperatures but narrower than that of air temperatures. The mean body temperature differed among individuals, with the overall mean body temperature (15 0 ℃) being higher than the overall mean air and nest temperatures. The mean lowest body temperature was 8 9 ℃, which was similar to the empirically estimated lower limit (9 ℃) of thermal tolerance for the species. Cobras could thermoregulate outside the nest using available warm spots in the enclosure during daytime when air temperatures were higher than 15 ℃. Recordings of body temperature for these individuals accounted for approximately 29% of the total recordings for all individuals under the same conditions. Cobras thermoregulating outside the nest maintained higher body temperatures than did individuals inside the nest both at night and during the day when air temperatures were either lower or higher than 15 ℃. During the day when air temperatures were lower than 15 ℃ cobras maintained lower body temperatures than at night. Cobras that did not thermoregulate outside the nest when daytime air temperatures were higher than 15 ℃ maintained almost the same body temperatures as at night and during the day when air temperatures were lower than 15 ℃. Body temperature was positively correlated with air temperature when temperatures were lower than 15 ℃, but varied independently with air temperature during the day when air temperatures were higher than 15 ℃. The results imply that this species can be a thermo conformer at low temperatures without warm spots for thermoregulation but a thermo regulator at relatively high temperatures with warm spots. A prolonged exposure of cobras to temperatures lower than 9 ℃ was lethal, but a brief exposure of cobras to the temperatures lower than their lower limits of thermal tolerance does not necessarily increase the mortality of animals.
出处 《动物学报》 SCIE CAS CSCD 北大核心 2002年第5期591-598,共8页 ACTA ZOOLOGICA SINICA
基金 国家自然科学基金资助项目 (No .3 0 0 70 12 1)。~~
关键词 实验围栏 越冬眼镜蛇 体温调节 无线电遥测 低温耐受性 Chinese cobra (Naja atra), Radiotelemetry, Thermoregulation, Thermal tolerance
  • 相关文献

参考文献24

  • 1Andrews, R. M., C. P. Qualls and B. R. Rose 1997 Effects of low temperature on embryonic development of Sceloporus lizards. Copeia 1997: 827~833.
  • 2Andrews, R. M. and B. R. Rose 1994 Evolution of viviparity: constrains on egg retention. Physiol. Zool. 67: 1 006~1 024.
  • 3Avery, R. A. 1982 Field studies of body temperature and thermoregulation. In: Gans, C. and F. H. Pough ed. Biology of the Reptilia Vol. 12.New York: Academic Press,93~116.
  • 4Cowles, R. B. and C. M. Bogert 1944 A preliminary study of the thermal requirements of desert reptiles. Bull. Amer. Mus. Nat. Hist. 82: 265~296.
  • 5Du, W. G., S. J. Yan and X. Ji 2000 Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. J. Therm. Biol. 25: 197~202.
  • 6Huang, M. H. 1990 Elapidae. In: Huang, M. H., Y. L. Jin and C. M. Cai ed. Fauna of Zhejiang: Amphibia and Reptilia. Hangzhou: Zhejiang Science and Technology Publishing House, 245-257.[黄美华 1990 眼镜蛇科. 见:黄美华, 金贻郎, 蔡春抹主编. 浙江动物志两栖爬行动物分册. 杭州: 浙江科学技术出版社, 245-257.]
  • 7Huey, R. B. 1982 Temperature, physiology, and the ecology of reptiles. In: Gans, C. and F. H. Pough ed. Biology of the Reptilia Vol. 12.New York: Academic Press,25~91.
  • 8Huey, R. B. and J. G. Kingsolver 1989 Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4: 131~135.
  • 9Hutchsion, V. H. 1976 Factors influencing thermal tolerances of individual organisms. In: Esch, G. W. and R. W. McFarlane ed. Thermal Ecology 11.Proc. 2nd SREL Thermal Ecology Symposium. Oak Ridge: U. S. National Technical Information Service. 10~26.
  • 10Ji, X. and W. G. Du 2001 The effects of thermal and hydric conditions on incubating eggs and hatchling traits in the cobra, Naja naja atra. J. Herpetol. 35: 186~194.

二级参考文献2

  • 1计翔,Takydromus smptentrionalis Comp Biochem Physiol A,1993年,105卷,283页
  • 2计翔,杭州师范学院学报,1990年,90卷,6期,90页

共引文献23

同被引文献33

  • 1计翔,郑向忠,徐永根,孙如明.中国石龙子热生物学的研究[J].动物学报,1995,41(3):268-274. 被引量:24
  • 2寿鹿,杜卫国,陆祎玮.北草蜥种群间生活史变异的成因分析:热环境、食物可利用性和体温的岛屿间差异[J].动物学报,2005,51(5):797-805. 被引量:8
  • 3魏成清,朱新平,陈永乐.平胸龟的生物学特性与人工驯养[J].广东农业科学,2005,32(6):88-89. 被引量:5
  • 4Avery RA. Field studies of body temperatures and thermoregulation. In: Gans C, Pough FH, eds. Biology of the Reptilia. London: Academic Press, 1982, 12:93-166.
  • 5Huey RB. Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH, eds. Biology of the Reptilia, London: Academic Press, 1982, 12:25-91.
  • 6Seebacher F. A review of thermoregulation and physiological performance in reptiles: What is the role of phenotypic flexibility? J Comp Physiol B, 2005, 175:453-461.
  • 7Bartholomew G A. Physiological control of body temperature. In: Gans C, Pough FH eds. Biology of the Reptilia, London: Academic Press, 1982, 12:167-211.
  • 8Andrews RM. Geographic variation in field body temperature of Sceloporus lizards. J Therm Biology, 1998, 23:329-334.
  • 9Castilla AM, van Damme R, Bauwens D. Field body temperatures, mechanisms ofthermoregulation and evolution of thermal characteristics in lacertid lizards. Nat Croat, 1999, 8:253-274.
  • 10Souzal FL, Martins FI. Body temperature of free-living freshwater turtles, Hydromedusa maximiliani (Testudines, Chelidae). Amphibia- Reptilia, 2006, 27:464-468.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部