期刊文献+

颗粒流理论在建立NOPD能量耗散模型中的应用 被引量:3

Research of the energy dissipation mechanism of NOPD based on granular flow theory
下载PDF
导出
摘要 为了研究颗粒进入对流状态时非阻塞性颗粒阻尼(NOPD)的能量耗散机理,引入颗粒流理论建立NOPD能量耗散的解析模型。借助离散单元法(DEM)初步研究了阻尼器内部颗粒的对流运动,引入普朗特混合长度理论对稠密颗粒流本构关系进行修正;借鉴振荡流理论最终得到NOPD的能量耗散解析模型。研究结果得到NOPD能量耗散率随颗粒参数变化的一般规律。在此基础上,搭建NOPD能量耗散功率测试实验台,对NOPD的能量耗散功率进行测试,验证了上述模型的正确性。研究结果进一步揭示了颗粒处于对流状态时NOPD能量耗散机理,为NOPD的应用提供了理论指导。 To study the energy dissipation mechanism and provide guidance to the application of NOPD,the granular flow theory is introduced to establish the energy dissipation model of NOPD.The convection of the particles inside the damper is studied using the discrete element method(DEM),and the Prandtl mix length theory is introduced to modify the constitution law of dense granular flow.The pressure in the granular flow is obtained by equate the vibrational excitation with the body force acted on the particles.It is shown that the energy dissipation rate of NOPD increases with the increase of vibration intensity,and decreases with the increase of granular diameter.It also indicates that particles near the side wall and the bottom wall of the damper dissipate more energy than particles in other regions.The model proposed in this paper can not only cast some light on understanding the energy dissipation mechanism of NOPD,but also provide some guidance to the parameter optimization of NOPD under different working conditions.
出处 《振动工程学报》 EI CSCD 北大核心 2016年第3期371-379,共9页 Journal of Vibration Engineering
基金 中国空间技术研究院CAST创新基金资助项目(J20141109)
关键词 NOPD 颗粒对流 稠密颗粒流 能量耗散模型 NOPD granular convection dense granular flow energy dissipation model
  • 相关文献

参考文献5

二级参考文献144

  • 1邓危梧.冲击减振器的效应及其基本参数的确定[J].机械工程学报,1964,12(4).
  • 2Fowler B L, Flint E M, Olson S E. Effectiveness and predictability of particle damping [ C ]. Proceedings of SPIE Conf. on Damping and Isolation, Newport Beach, CA, March, 1999, 22.
  • 3Saeki M. Impact damping with granular materials in a horizontally vibrating system [ J ]. Journal of Sound and Vibration , 2002, 251(1) : 153-161.
  • 4Cundall P A, Hart R. Numerical Modeling of Discontinua[ J]. J. Engr. Comp., 1992, 9:101-113.
  • 5Liu W, Tomlinson G R, Rongong J A. The dynamic characterisation of disk geometry particle dampers [ J ]. Journal of Sound and Vibration, 280(25) : 849-861.
  • 6Mishra B K, Murty C V R. On the determination of contact parameters for realistic DEM simulations of ball mills [ J ]. Powder Technology. 2001, 115(15) :290-297.
  • 7Zhiwei Xu, Michael Yu Wang, Tianning Chen, A particle damper for vibration and noise reduction, Journal of Sound and Vibra-tion 270 (2004)1033-1040.
  • 8H.V.Panossian, Structural damping enhancement via non-obstructive particle damping technique, Journal of Vibration and Acoustics 114 (1992) 101-105.
  • 9H.V.Panossian, B.Kovac & R.Rackl.Composite honeycomb treatment via non-obstructive particle damping (NOPD), Proceed-ings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004,p.1689.
  • 10H.V.Panossian, Richard Ehrgott, Non-obstructive particle damping (NOPD) treatment optimization for composite honeycomb panels, Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2007,p.2047.

共引文献100

同被引文献22

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部