期刊文献+

异常金融交易行为模式识别中的特征提取

Feature Extraction in Abnormal Pattern Recognition of Financial Transactions
下载PDF
导出
摘要 特征提取的目的是获得能够被机器识别的数学特征。区别于传统的金融时间序列的特征提取与相似性度量方法,提出了一种基于径向基函数RBF神经网络一步预测误差序列特征提取与相似性度量方法。该方法将时间序列之间的相似性度量换化成特征矢量之间的相似性度量,并且建立了特征矢量与物理信息的关联,能够有效的检测出异常的金融交易行为模式。实验证明该方法相对于传统的直接距离、傅立叶变换、ARMA模型法具有明显优势。 Feature extractors are used to get mathematical features that can be machine -readable.In this paper a novel feature extraction and similarity measurement method based on Radial Basis Function neural network one-step deviation prediction is proposed,which is different from traditional time series researches.The method converts time series similarity to feature vectors similarity comparison,while feature vectors are associated with physical information.Experiments show that this method has obvious advantages compared to traditional time series researches like direct distance,Fourier transform,ARMA model method.It can effectively detect abnormal patterns of financial transactions.
作者 汤俊 李晓妹
出处 《中南财经政法大学研究生学报》 2011年第5期11-15,共5页 Journal of the Postgraduate of Zhongnan University of Economics and Law
基金 2009国家社科基金资助项目:基于行为模式识别的可疑金融交易监控体系研究(项目编号:09BTJ002)本文系部分研究成果
关键词 时间序列 异常金融交易 RBF神经网络 特征提取 Time Series Abnormal Financial Transactions Radial Basis Function Neural Network Feature Extraction
  • 相关文献

参考文献8

  • 1翁颖钧,朱仲英.基于分段线性动态时间弯曲的时间序列聚类算法研究[J].微型电脑应用,2003,19(9):19-23. 被引量:7
  • 2张海勤,蔡庆生.基于小波变换的时间序列相似模式匹配[J].计算机学报,2003,26(3):373-377. 被引量:31
  • 3N.Matic,I.Guyon,L.Bottou,J.Denker,V.Vapnik.Computer aided cleaning of large databases for character recognition. Proceedings of the 11th International Conference on Pattern Recognition . 1992
  • 4B. Xia.Similarity Search in Time Series Data Sets. . 1997
  • 5Jian Tang,Z Chen,A.Wai-chee Fu, et al.A Robust Outlier Detection Scheme for Large DataSets. 6th Pacific-Asia Conf. on Knowledge Discovery and Data Mining . 2002
  • 6Berndt D,Clifford J.Using Dynamic Time Warping to Find Patterns in Time Series. AAAI-94 Workshop on Knowledge Discovery in Databases(KDD’94) . 1994
  • 7Chang-Shing Perng,Haixun Wang,Sylvia R Zhang,et al.Landmarks: A New Model for Similarity-Based Pattern Querying in Time Series Databases. Proceedings of the 16th International Conference on Data Engineering (ICDE) . 2000
  • 8Chan K,Fu AW.Efficient time series matching by wavelets. Proceedings of the 15th IEEE International Conference on Data Engineering . 1999

二级参考文献12

  • 1Das, G., Lin, K., Mannila, H., Renganathan, G.& Smyth, P. Rule discovery form time series. Proceedings of the 4rd International Conferenec of Knowledge Discovery and Data Mining.(1998), AAAI Press: 16-22.
  • 2Keogh, E. ,& Pazzani, M. An enhanced representation of time series which allows fast and accurate classification,clustering and relevance feedback. Proceedings of the 4rd International Conference of Knowledge Discovery and Data Mining. (1998), AAAI Press: 239-241.
  • 3Berndt, D. & Clifford, J. Using dynamic time warping to find patterns in time series. AAAI-94 Workshop on Knowledge Discovery in Databases (KDD- 94), (1994),Washington.
  • 4D.T. Pham and A. B. Chan " Control Chart Pattern Recognition using a New Type of Self Organizing Neural Network" Proc. Instn, Mech, Engrs. 1998, 212( 1):115-127.
  • 5Keogh, E.& Folias, T. (2002). The UCR Time Series Data Mining Archive [http://www. cs. ucr. edu/ ~ eamonn/TSDMA/index, html]. Riverside CA. University of California-Computer Science & Engineering Department.
  • 6Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases. In: Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, USA, 1993. 69~84
  • 7Rafiei D, Mendelzon A. Efficient retrieval of similar time sequences using DFT. In: Proceedings of the 5th International Conference on Foundations of Data Organizations and Algorithms, Kobe, 1998. 249~257
  • 8Chan K-P, Fu A W-C. Efficient time series matching by wavelets. In: Proceedings of the 15th International Conference on Data Engineering, Sydney, Australia, 1999.126~133
  • 9Burrus C S, Gopinath R A, Guo H. Introduction to Wavelets and Wavelet Transform: A Primer. New Jersey, USA: Prentice Hall, 1998
  • 10Beckmann N, Kriegel H-P, Schneider R, Seeger B. The R*-tree: An efficient and robust access method for points and rectangles. In: Proceedings of ACM SIGMOD International Conference on Management of Data, New Jersey, USA, 1990.322~331

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部