摘要
本文介绍了用前文所构造的任意曲面壳体的四边形有限元线法[1]单元所作的几个数值算例。算例表明该单元具有精度高、网格适应性好、厚薄通用的特点,采用p收敛技术可顺利克服闭锁,同时获得高精度的位移和内力,是求解壳体结构的一种有竞争力的半解析方法。
A number of examples are given in this paper by using the quadrilateral FEMOL (Finite Element Method of Lines) elements for arbitrarily curved shells proposed in a companion paper. It is shown that the elements have some remarkable advantages such as high accuracy, high adaptability to various meshes and thickness of shells. Also, the “locking” problem can readily be overcome with p-convergence strategy with highly accurate solution being achieved. In summary, FEMOL is a competitive semi-analytical method for shell problems.
出处
《工程力学》
EI
CSCD
北大核心
2002年第5期16-23,共8页
Engineering Mechanics
基金
国家自然科学基金
杰出青年科学基金资助项目