期刊文献+

确定性载荷作用下Timoshenko薄壁梁的弯扭耦合动力响应 被引量:3

Dynamic Response of Bending-torsion Coupled Timoshenko Thin-walledBeam under Deterministic Loads
下载PDF
导出
摘要 建立了一种普遍的解析理论用于求解确定性载荷作用下Timoshenko薄壁梁的弯扭耦合动力响应。首先通过直接求解单对称均匀Timoshenko薄壁梁单元弯扭耦合振动的运动偏微分方程,给出了计算其自由振动的精确方法,并导出了Timoshenko弯扭耦合薄壁梁自由振动主模态的正交条件。然后利用简正模态法研究了确定性载荷作用下单对称Timoshenko薄壁梁的弯扭耦合动力响应,该弯扭耦合梁所受到的荷载可以是集中载荷或沿着梁长度分布的分布载荷。最后假定确定性载荷是谐波变化的,得到了各种激励下封闭形式的解,井对动力弯曲位移和扭转位移的数值结果进行了讨论。 A general analytical theory was developed in order to obtain the dynamic response of bending-torsion coupled Timoshenko thin-walled beam under deterministic loads. Firstly, the accurate calculation method for free vibration of Timoshenko thin-walled beam was derived by solving the governing motion partial differential equation of monosymmetric uniform Timoshenko thin-walled beam element. Also the orthonormality condition of principal mode of free vibration of Timoshenko thin-walled beam was derived. Then the dynamic response of bending-torsion coupled monosymmetric Timoshenko thin-walled beam under deterministic loads was investigated by using the normal mode method. The loads on the beam may be either concentrated or distributed over its length. Finally the theoretical expressions for the displacement response of Timoshenko thin-walled beam subject concentrated or distributed harmonic loads were obtained and numerical results for the dynamic flexural and torsional displacements were presented and discussed.
机构地区 上海交通大学
出处 《力学季刊》 CSCD 北大核心 2002年第3期380-385,共6页 Chinese Quarterly of Mechanics
基金 船舶工业国防基础研究基金(J40.3.1)
关键词 确定性载荷 Timoshenko薄壁梁 弯扭耦合 动力响应 简正模态法 bending-torsion coupled Timoshenko thin-walled beam dynamic response normal mode method
  • 相关文献

参考文献6

  • 1[1]Bishop R E D, Cannon S M, Miao S. On coupled bending and torsional vibration of uniform beams. Journal of sound and vibration, 1989,131:457-464
  • 2[2]Dokumaci E. An exact solution for coupled bending and torsion vibrations of uniform beams having single cross-sectional symmetry.Journal of sound and vibration, 1987,119:443-449
  • 3[3]Friberg P O. Beam element matrices derived from Vlasov's theory of open thin-walled elastic beams. International Journal of numerical methods in engineering, 1985,21:1205-1228
  • 4[4]Leung A Y T. Natural shape functions of a compressed Vlasov element. Thin-walled structure, 1991,11:31-438
  • 5[5]Vlasov V Z. Thin-walled Elastic Beams, 2nd edn, Moscow, 1959
  • 6[6]Bishop R E D, Price W G. Coupled bending and twisting of a Timoshenko beam. Journal of sound and vibration, 1977,50:469-477

同被引文献20

  • 1邢誉峰,乔元松,诸德超,孙国江.ELASTIC IMPACT ON FINITE TIMOSHENKO BEAM[J].Acta Mechanica Sinica,2002,18(3):252-263. 被引量:5
  • 2陈镕,郑海涛,薛松涛,唐和生,王远功.无约束Timoshenko梁横向冲击响应分析[J].应用数学和力学,2004,25(11):1195-1202. 被引量:10
  • 3诸德超,邢誉峰.点弹性碰撞问题之解析解[J].力学学报,1996,28(1):99-103. 被引量:38
  • 4黄剑敏,任文敏.弹性杆与结构接触冲击的冲击力计算研究[J].应用力学学报,1996,13(3):115-123. 被引量:3
  • 5Lam K Y,Sathiyamoorthy T S.Reponse of composite beam under low-velocity impact of multiple masses[J].Compsite Structures,1999,44:205-220.
  • 6Yang J L,Xi F.Experimental and theoretical study of free-free beam subjected to impact at any cross-section along its span[J].International Journal of Impact Engineering,2003,28:761-781.
  • 7K. Y. Lain, T. S. Sathiyamoorthy. Reponee of Compos- ite Beam under Low -velocity Impact of Multiple Masses[ J]. Compsite Structures, 1999, 44:205 - 220.
  • 8J. L. Yang, F. Xi. Experimental and Theoretical Study of Free - Free Beam Subjected to Impact at any Cress - Section Along its Span [ J ]. International Journal of Impact Engineer- ing, 2003, 28:761 -781.
  • 9Love A E H. A treatise on the mathematical theory of elasticity[M]. New York: Dover, 1944.
  • 10Timoshenko S. Vibration problems in engineering[M]. 2nd ed. New York: Van Nostrand, 1937.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部