摘要
在综合评价体系结构基础上 ,应用模糊神经网络技术 ,建立了 1个湖泊富营养化综合评价模糊神经网络专家系统 ,该专家系统易于表达模糊知识 ,其知识获取和存储方式与普通专家系统不同 ,具有较高的推理效率 ,较强的容错、自适应和自我更新能力。
An expert system (ES) based on fuzzy neural network for comprehensive evaluation of eutrophication lakes has been developed based on the hierarchical model.This ES approach achieves and stores the experts' knowledge and experiences with different ways in comparison with the common and traditional ES,and has high efficiency on inference and great ability on fault-tolerance,self-adaptation and self-updating.
出处
《内蒙古农业大学学报(自然科学版)》
CAS
2002年第3期80-84,共5页
Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金
国家自然科学基金项目 (3 0 160 0 2 2 )
关键词
湖泊富营养化
综合评价
模糊神经网络
专家系统
eutrophication of lakes
Comprehensive evaluation
fuzzy neural network
expert system