摘要
在通常的聚类分析方法的基础上 ,提出了一种改进聚类分析方法 ,并运用于数据源中缺损数据的修补 .案例示算结果显示 ,该方法比传统的数据预处理方法更合理 ,置信度更大 .
The problem of defective data often arises during the course of mining data. Thus data preprocessingis necessary. On the basis of traditional cluster analysis methods, this paper attempts to present a compositive clustering analysis method which is employed to remedy lost data in data source. The result of calculationson mass data shows that this method is more reasonableand believablecompared with traditional datapreprocessing methods.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2002年第5期658-663,共6页
Journal of Southwest China Normal University(Natural Science Edition)