期刊文献+

Bihari积分不等式的推广(英文)

The Generlization of Bihari's Inequality
下载PDF
导出
摘要 Bihari不等式在微分方程中有十分重要的作用。本文作者把Bihari不等式推广到含n个非线性项的积分不等式 ,并且用归纳法加以证明。所得结论包括了M .Pinto和SungKyuChoi等的结论。最后考虑了更一般的情形。 Bihari's inequality is one of the most important tools in Differential Equation.In this paper ,The generalization of Bihari's inequality which has n nonlinear terms by using inductive method is studied.The obtained results include those of M.Pinto and Sung Kyu Choi etc.. Finally,we consider some more general conditions.
作者 李旭东
出处 《四川工业学院学报》 2002年第3期79-81,共3页 Journal of Sichuan University of Science and Technology
关键词 积分不等式 GRONWALL-BELLMAN不等式 BIHARI不等式 微分方程 归纳法 Gronwall-Bellman inequality Bihari's inequality
  • 相关文献

参考文献7

  • 1[1]R. Bellman. Asymptotic series for the solutioin of linear differential-difference equation[J].Rendiconti del circolo Matematica Di Palermo.1958,(7):1~9
  • 2[2]H.E. Gollwritzer. A note on a functional inequality[J].Proc. Amer. Math. Soc. 1969,(23):642~647.
  • 3[3]B. G. Pachpatte. On some generalization of Bellman's Jemma[J]. J. Math. Anal. Appl,1975,(51):141~150.
  • 4[4]B. G. Pachpatte. A note on Gronwall-Bellman's inequality[J].J. Math. Anal. Appl.1973,(44): 758~762.
  • 5[5]M. Pinto. Integral Inequalities of Bihari-Type and Applications[J].Funkcialaj Ekvacioj,1990,(33):387~403.
  • 6[6]Sung Kyu Choi et.. Lipschitz and exponential asymptotic stablity for nonlinear functional differential systems[J].Dynamic Systems and Applications},1997,(6):397~410.
  • 7[7]Bihari,I. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations[J].Acta Math. Acad. Sci. Hungar,1956,(7): 81~94.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部