期刊文献+

多目标的分布式协同进化MDO算法 被引量:10

Multiobjective Distributed Coevolutionary Multidisciplinary Design Optimization
下载PDF
导出
摘要 通过引入非优超排序和排挤的多目标处理机制 ,将分布式协同进化MDO算法的能力扩展到多目标的多学科设计优化问题。多目标的分布式协同进化MDO算法在保持各学科充分自治和各学科并行设计优化协同的基础上 ,通过一次运行即可获得具有良好分布的多个Pareto最优解 ,逼近整个Pareto最优前沿。应用于导弹气动 /发动机 /控制三学科两目标设计优化问题 ,与约束法计算结果的对比表明算法能够有效逼近该问题的Pareto最优前沿 。 By introducing multiobjective handling mechanism of nondominated sorting and crowding, ability of distributed coevolutionary multidisciplinary design optimization algorithm is extended to multiobjective multidisciplinary design optimization (MDO) problems. The multiobjective distributed coevolutionary MDO approach maintains sufficient disciplinary autonomy, exploits synergism of disciplinary concurrent design optimizations, meanwhile it obtains a set of well distributed Pareto optimal solutions and makes a good approximation of the whole Pareto optimal front in one single run. It is applied to a missile design optimization problem with two system objectives and three disciplines-aerodynamic, engine, and control. Comparison with the results of the constraint method indicates that the multiobjective coevolutionary MDO approach can effectively approximate Pareto optimal front of the ploblem, providing plenty of information for design decision making.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2002年第4期12-15,共4页 Journal of National University of Defense Technology
关键词 MDO算法 导弹设计 多学科设计优化 多目标优化 进化计算 协同进化算法 分布式计算 missile design multidisciplinary design optimization multiobjective optimization evolutionary computation coevolutionary algorithms distributed computing
  • 相关文献

参考文献6

  • 1Sobieszczanski-Sobieski J, Haftka T. Multidisciplinary aero-space design optimization: survey of recent developments [R]. AIAA 96-0711,1996.
  • 2Tappeta R V,Renaud J E. Multiobjective collaborative optimization[J]. Journal of Mechanical Design, 1997, 119(9): 403~411.
  • 3Eckart Zitzler. Evolutionary algorithms for multiobjective optimization: methods and applications[D]. Doctoral thesis ETH NO. 13398, Zurich: Swiss Federal Institute of Technology (ETH), Aachen, Germany: Shaker Verlag.
  • 4陈琪锋,戴金海,李晓斌.分布式协同进化MDO算法及其在导弹设计中应用[J].航空学报,2002,23(3):245-248. 被引量:10
  • 5Deb K, Agrawal S, Pratap A, Meyarivan T. A fast non-dominated sorting genetic Algorithm for multi-objective optimization: NSGA-Ⅱ[R]. KanGAL Report No.200001.
  • 6Balling R J, Sobieszczanski-Sobieski J. Optimization of coupled systems: a critical overview of approaches[J]. AIAA Journal, 1996, 34 (1): 6-17.

二级参考文献3

共引文献9

同被引文献162

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部