期刊文献+

基于可加性模糊系统的负荷时间序列预测 被引量:2

Load time series forecasting based on additive fuzzy systems
下载PDF
导出
摘要 本文依据可加性模糊系统理论 ,提出了一种新的预测方法 ,利用聚类方法与有监督学习相结合的训练方法 ,提高了系统的函数逼近能力。仿真结果表明 ,系统学习速度快、预测精度高 ,在电力负荷时间序列预测中获得相当满意的结果。 In this paper, we show that additive fuzzy system can be used in the prediction of short\|term load time series. By using optimal cluster algorithm in combination with supervised learning of training system, functional approximation efficiency is improved. Simulations results show that the learning algorithm has the features of quick convergence and high forecasting precision. Fairly satisfactory results can be acquired for power load time series forecasting.
机构地区 东北电力学院
出处 《电工电能新技术》 CSCD 2002年第4期23-25,73,共4页 Advanced Technology of Electrical Engineering and Energy
关键词 可加性模糊系统 负荷时间序列预测 电力系统 聚类学习算法 有监督学习 additive fuzzy system cluster learning algorithm supervised learning load time series prediction
  • 相关文献

参考文献1

  • 1徐勇 荆涛译.神经网络模式识别及其实现[M].北京:电子工业出版社,1999..

共引文献9

同被引文献15

  • 1钟波,周家启,肖智.基于粗糙集与神经网络的电力负荷新型预测模型[J].系统工程理论与实践,2004,24(6):113-119. 被引量:19
  • 2王雪,王晟,马俊杰.径向基粒子滤波状态跟踪测量算法[J].机械工程学报,2006,42(12):21-25. 被引量:4
  • 3Amjady, N. Short-term hourly load forecasting using time-series modeling with peak load estimation capability [ J ]. IEEE Trans. on Power Systems, 2001, 16(3): 498-505.
  • 4S Rahman, M Baba. Software design and evaluation of a microcomputer-based automated load forecasting system [A].IEEE Summer Power Meeting [C]. Portland, Oregon, USA,1989. 782-788.
  • 5K hotanzad A, Afkhami-Rohani R, Tsun-Liang Lu, et al.ANNSTLF - a neural-network-based electric load forecasting system [J]. IEEE Trans. on Neural Networks, 1997, 8(4):835-846.
  • 6Shimakura Y, Fujisawa Y, Maeda Y, et al. Short-term load forecasting using an artificial neural network [ A ]. Proc. of ANNPS '93 [C]. Yokohama, Japan, 1993. 233-238.
  • 7Mori H, Kobayashi H. Optimal fuzzy inference for short-term load forecasting [A]. Proc. of Power Industry Computer Application Conference [C]. Salt Lake City, USA, 1995. 312-318.
  • 8Lambert-Torres G. Fuzzy techniques for load forecasting [A].Power Engineering Society Summer Meeting, IEEE [ C ]. Seattle, USA, 2000. 178-179.
  • 9Breiman L, Friend J H, Olshen R A. Classification and Regression Trees [ M ]. California: Belmont Wadsworth Inc,1984.
  • 10M W Kurrynski. The optimal strategy of a tree classifier [J].Pattern Recog., 1983, 16: 81-87.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部