摘要
设F(z)是实轴R上的实值连续函数F(x)在上半平面H上的Beurling Ahlfors延拓,其广义导数 F无界.讨论了 F(x+iy)与λF(x,t)=|F(x+t)-2F(x)+F(x-t)t|的增长阶之间的关系,对 F(x+iy)的值作出了更为精细的估计.
Let F(z) be the BeurlingAhlfors extension of the continuous complexvalued function F(x) defined on the real axis R,and the generalized derivative F of F(z) is unbounded. The relationship between the increasing order of F(x+iy) and that of λF(x,t)=F(x+t)-2F(x)+F(x-t)t was discussd,and improve the corresponding result.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2002年第5期577-581,共5页
Journal of Fudan University:Natural Science
基金
国家自然科学基金资助项目(19871014)