摘要
Krylov方法是求解线性方程组Ax=b,A∈CN×N,b∈CN的一种迭代方法,当A非奇异时,已有很好研究.而当A奇异或接近奇异阵时,在一定的假定条件下,Krylov方法的解与范教最小的最小二乘解A+b之间的差是可以估计出来的.
Krylov subspace method is an iteration method of solving the linear equation Ax=b,A∈CN×N,b∈CN. When the matrix A is nonsigular,it is wellunderstooded. But when A is or near to singular,Krylov method may cannot get the solution (or leastsquare solution),under some assumption,the error between solution of Krylov method and the leastsquare solution can be estimated.
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2002年第5期566-569,587,共5页
Journal of Fudan University:Natural Science
基金
国家自然科学基金重点资助项目(10171021)
高等学校博士点基金资助项目