摘要
证明了ωγ且拟Nagata-空间的值域分解定理,即如果X是ωγ且拟Nagata-空间,f:X→Y是连续且到上的闭映射,则存在Y的σ-闭离散子空间Z使得对于每一y∈Y-Z,f-1(y)是X的可数紧子集。
In this paper, a range decomposition theorem on ωγ and quia-Nagata spaces is geven, i, e. if X is the ωγ and quia-Nagata space:f;X→Y is a closed continous surjection maping, then f-1(y) is countable compact for each y∈Y - Z and Z is a σ-closed discret subset of Y.
出处
《商丘师范学院学报》
CAS
2002年第5期22-23,共2页
Journal of Shangqiu Normal University