期刊文献+

基于AANN的数字滤波技术 被引量:1

AANN Based Digital Filter
下载PDF
导出
摘要 航空发动机在高温、高压、高转速及较大振动等恶劣的条件下工作时 ,其控制系统中的传感器很容易受到干扰 ,所以发动机测量参数中常常包含较大的噪声。另一方面 ,发动机的测量参数多于其独立变量的数量 ,即在这些测量参数中存在冗余信息。AANN(自联想神经网络 )通过对信息的压缩及解压缩过程 ,能够利用冗余信息抑制其测量噪声。在发动机故障诊断过程中 ,应用自联想神经网络对测量参数进行预处理 ,可以大大提高故障诊断的准确率。 Sensors in engine control system are easily disturbed, as aeroengine operates in an environment of high temperature, high pressure,high speed and rough vibration. Therefore engine measurements contain noises. On the other hand, the number of measurements is greater than that of independent variables in the system, which implies that there is spare information in the parameters. Auto associative neural network (AANN) is introduced to reduce the noise level contained through mapping and decoding process. It is found that the noise can be greatly filtered to result in a higher success rate of fault diagnosis of aeroengine.
出处 《燃气涡轮试验与研究》 2002年第4期45-48,共4页 Gas Turbine Experiment and Research
关键词 航空发动机 故障诊断 神经网络 数字滤波 AANN aeroengine fault diagnosis neural network digital filter
  • 相关文献

参考文献6

  • 1Lu P J,Zhang M C,Hsu T C,and Zhang J. An Evaluation of Engine Faults Diagnostics Using Artificial Neural Networks[A].Munich Germany:Proceedings of ASME TURBO EXPO 2000[C],2000:1-7.
  • 2Volponi A J,DePold H,Ganguli R,Chen D G. The Use of Kalman Filter and Neural Networks Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study[A]. Munich Germany:Proceedings of ASME TURBO EXPO 2000[C].2000:1-9.
  • 3Zedda M,and Singh R. Fault Diagnosis of A Turbofan Engine Using Neural Networks: A Quantitative Approach[R]. AIAA-98-3602,1998.
  • 4Guo T H,Saus J,Lin C F,and De J H. Sensor validation for turbofan engines using an autoassociative neural networks[R]. AIAA-96-3926,1996.
  • 5叶志锋,孙健国.基于概率神经网络的发动机故障诊断[J].航空学报,2002,23(2):155-157. 被引量:51
  • 6叶志锋,孙健国.应用神经网络诊断航空发动机气路故障的前景[J].推进技术,2002,23(1):1-4. 被引量:20

二级参考文献14

共引文献64

同被引文献7

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部