摘要
航空发动机在高温、高压、高转速及较大振动等恶劣的条件下工作时 ,其控制系统中的传感器很容易受到干扰 ,所以发动机测量参数中常常包含较大的噪声。另一方面 ,发动机的测量参数多于其独立变量的数量 ,即在这些测量参数中存在冗余信息。AANN(自联想神经网络 )通过对信息的压缩及解压缩过程 ,能够利用冗余信息抑制其测量噪声。在发动机故障诊断过程中 ,应用自联想神经网络对测量参数进行预处理 ,可以大大提高故障诊断的准确率。
Sensors in engine control system are easily disturbed, as aeroengine operates in an environment of high temperature, high pressure,high speed and rough vibration. Therefore engine measurements contain noises. On the other hand, the number of measurements is greater than that of independent variables in the system, which implies that there is spare information in the parameters. Auto associative neural network (AANN) is introduced to reduce the noise level contained through mapping and decoding process. It is found that the noise can be greatly filtered to result in a higher success rate of fault diagnosis of aeroengine.
出处
《燃气涡轮试验与研究》
2002年第4期45-48,共4页
Gas Turbine Experiment and Research