期刊文献+

脉冲充电对铅酸蓄电池硫酸盐化的影响 被引量:9

Effect of pulse charge on sulphation of lead-acid battery
下载PDF
导出
摘要 设计了一种消除铅酸蓄电池硫酸盐化故障的脉冲充电实验方法 ,其脉冲电流的大小和周期介于正常电池的脉冲充电法和传统的消除硫酸盐化的反复充放电法之间 ,并用该法与传统方法进行对照实验。实验结果表明 ,脉冲充电法充入的电量仅为传统方法的 42 % ,但各个单体电池的电解液密度上升幅度平均为传统方法的 83 %。证明了脉冲充电法比传统方法能更有效地消除硫酸盐化 ,并由此推断出用脉冲充电法对正常电池进行恢复性充电 ,能起到防止硫酸盐化的作用 。 An experimental method of pulse charge is designed to eliminate the sulphation of lead acid battery. The magnitude and period of the pulse current was between that of the pulse charge method for normal battery and the traditional repeated charge/discharge method for the sulphated battery. The results of the contrastive experiment between the traditional and the new method show that although the total charge capacity obtained by the later method is only 42% as that obtained by the former, the average increase value of electrolyte density of each single cell is 83% as that obtained by the traditional method. That means, the pulse charge method can eliminate sulphation more effectively than traditional method. Therefore, the recovering charge for normal battery by pulse charge method is concluded to inhibit sulphation and increase cycle life of lead acid battery.
出处 《电源技术》 CAS CSCD 北大核心 2002年第5期336-338,共3页 Chinese Journal of Power Sources
关键词 脉冲充电 铅酸蓄电池 硫酸盐化 小电流充电 pulse charge low current charge lead acid battery sulphation
  • 相关文献

参考文献3

二级参考文献25

  • 1徐曼珍.论阀控式密封铅酸蓄电池的浮充[J].通信电源技术,1996(4):15-20. 被引量:6
  • 2[1]PAVLOV D, RUEVSKI S, NAIDENOV V, et al. Influence of temperature, current and number of cycles on the efficiency of the closed oxygen cycle in VRLA batteries [J]. J Power Sources, 2000,85:164—171.
  • 3[2]PAVLOV D, ROGACHEV T. Dependence of the phase composition of the anodic layer on oxygen evolution and anodic corrosion of lead electrode in lead dioxide potential region [J]. Electrochem Acta, 1978,23:1237—1242.
  • 4[3]PAVLOV D, DIMITROV M, PETKOVA G, et al. The effect of selenium on the electrochemical behaviour and corrosion of Pb-Sn alloys used in lead-acid batteries [J]. J Electrochem Soc, 1995,142:2 919—2 927
  • 5[4]NONOGUCHI M, ANDO K. High reliability stationary lead-acid storage battery [J]. Progress in Batteries and Solar Cells, 1978,1:128—134.
  • 6[5]RUETSCHI P, OCKERMAN J. Sealed cells with auxiliary electrodes [J]. Electrochem Technol, 1966,4:383—392.
  • 7[6]NIKOLOV I, PAPAZOV G, PAVLOV D, et al. Tungsten carbide Electrodes for Gas Recombination in Lead/Acid Batteries [J]. J Power Sources, 1990,31:69—77.
  • 8[7]PAPAZOV G, IKOLOV I, PAVLOV D, et al. Sealed lead/acid battery with auxiliary tungsten Carbide electrodes [J]. J Power Sources, 1990,31:79—88.
  • 9[8]PAPAXOV G, NIKOLOV I, PAVLOV D, et al. Lead-acid battery with WC recombination electrodes [J]. Bulletin of Electrochemistry, 1990,6:255—259.
  • 10[9]AKIRA S, MAKOTO Y, MASAO M. Japanese patent: 44—41 239,1969.

共引文献54

同被引文献25

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部