期刊文献+

IDENTIFICATION OF BOTH CLOSED-AND OPEN-LOOP STOCHASTIC SYSTEM WHILE STABILIZING IT 被引量:2

IDENTIFICATION OF BOTH CLOSED-AND OPEN-LOOP STOCHASTIC SYSTEM WHILE STABILIZING IT
原文传递
导出
摘要 This paper proposes a recursive algorithm estimating coefficients of the linear stochastic control system(ARX system) driven by a martingale difference sequence, while adaptively stabilizing the system without introducing external excitation signal. The system is allowed to be unstable and of nonminimum-phase. The estimates derived for the coefficients of both closed-loop and open-loop systems are strongly consistent.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2002年第1期1-17,共17页 系统科学与复杂性学报(英文版)
基金 This research is supportedby the National Natural Science Foundation of China and the National Key Project of China.
关键词 System identification ARX system UNSTABLE nonminimum-phase strong consistency. 随机控制系统 闭合环 开环 系统识别
  • 相关文献

参考文献2

共引文献1

同被引文献7

  • 1Chen H F, Guo L. Identification and stachastic adaptive control[M]. Boston: Birkhauser, 1991.
  • 2Lozano R, Zhao X H. Adaptive pole placement without excitation probing signals [J]. IEEE Trans Autom Control, 1994,39:47-58.
  • 3Guo L. Self-convergence of weighted least squares with applications to stochastic adaptive control [J].IEEE Trans Autom Control, 1996,41 (1) : 79-89.
  • 4Chen H F, Cao X R. Controllability is not necessary for adaptive pole placement control [J]. IEEE Trans Autom Control, 1997,42(9) : 1222-1230.
  • 5Bercu B. Weighted estimation and tracking for ARMAX models [J]. SIAM J Contr Optimization,1995,33(1) :89-106.
  • 6Rudin W, Real and Complex Analysis[M]. McGrawHill, 1974.
  • 7Chow Y S, Teicher H. Probability Theory [M ].Springer-Verlag, 1988.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部