摘要
A method for solving nonlinear programming using genetic algorithm is presented. In the operations of crossover and mutation in each generation, to ensure the new solutions are all feasible, we present a method in which the bounds of every variable in the solution are estimated beforehand according to the constrained conditions. For the operation of mutation, we present two methods of cube bounding and variable bounding. The experimental results are given and analyzed. They show that the method is efficient and can obtain the results in less generation.
基金
The work is supported by National Natural Science Foundation of China ( 6 9974 0 33)