期刊文献+

ICA在思维脑电特征提取中的应用 被引量:4

The application of Independent Component Analysis in the pattern extraction of Mental EEG
下载PDF
导出
摘要 简要介绍了独立分量分析 (ICA)的基本思想及算法 ,并将其应用在基于多导思维脑电 (mentalEEG)的特征提取方面。实验结果表明 :ICA可以将脑电信号中包含的心电(ECG)、眼电 (EOG)等多种干扰信号成功地分离出来 ,较好地完成了脑电消噪预处理工作。同时 ,通过使用ICA方法对不同心理作业的脑电信号进行分析处理 ,发现了与心理作业相对应的脑电独立分量特征 ,这些稳定的独立分量特征为心理作业分类和脑—机接口技术提供了新的实现方法。 ICA is applied to the mental EEG signal analysis. In one side, our experiment results show that ICA can effectively detect, separate and remove a wide variety of artefacts from EEG recordings. For another, the ICA algorithm is used to the pattern extraction of mental EEG signals from different mental tasks. By studying the EEG independent sources and their projection on human scalp, we can find that some steady independent components always appear when the subject repeats the same mental tasks. The results will provide us a promising method in the classification of mental tasks and the research on Brain-Computer Interface(BCI) technology.
出处 《微机发展》 2002年第6期36-39,共4页 Microcomputer Development
基金 安徽省自然科学基金资助项目 (0 0 43 2 14 )
关键词 独立分量分析 思维脑电 脑电消噪 特征提取 ICA 心理作业 independent component analysis mental EEG artifacts cancellation pattern extraction mental task
  • 相关文献

参考文献6

  • 1Comon. Independent component analysis: A new concept?[J].Signal Processing, 1994,36(3):287-314.
  • 2Hyvarinen A. Independent Component Analysis: A Tutorial[EB/OL].http://www.cis.hut.fi/projects/ICA.
  • 3Scott Makeig. Developments in Neural Human-System Interface Design[EB/OL]. Ftp://www.cnl.salk.edu/pub/.
  • 4Scott Makeig. Independent Component Analysis of Electroencephalographic Data [EB/OL]. ftp://www.cnl.salk.edu/pub/.
  • 5杨福生 等.独立分量分析及其在生物医学工程中的应用[D]..99''中国生物医学电子学学术年会论文集[C].,1999..
  • 6吴小培,冯焕清,周荷琴,王涛.独立分量分析及其在脑电信号预处理中的应用[J].北京生物医学工程,2001,20(1):35-37. 被引量:32

二级参考文献3

  • 1John R.Hughes 马仁正译.临床实用脑电图学[M].北京:人民卫生出版社,1997.189.
  • 2刘琚.利用ICA方法对线形混叠的生物医学信号进行盲提取.99’中国生物医学电子学学术年会论文集[M].,.155-156.
  • 3杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58

共引文献31

同被引文献35

  • 1刘建平,郑崇勋.脑电信号的分析──一种探索大脑功能状态及活动规律的途径[J].国外医学(生物医学工程分册),1995,18(5):262-270. 被引量:7
  • 2[1]Comon P. Independent component analysis, A new concept[J]? Signal Processing,1994,36:287-314.
  • 3[2]Bell A J, Sejnowski T J. An information maximization approach to blind separation and blind deconvolution[J]. Neural Computation,1995,7(6):1129-1159.
  • 4[3]Lee TW. Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources[J]. Neural Computation,1999,11(2):409-433.
  • 5[4]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans Neural Networks,1999,10(3):626-634.
  • 6[5]Cardoso JF. High-order contrasts for independent component analysis[J]. Neural Computation,11(1),1999,157-192.
  • 7[6]Nojun Kwak, Chong-Ho Choi. Face recognition using feature extraction based on independent component analysis[J]. IEEE,ICIP 2002,337-340.
  • 8[7]Lieven De Lathauwer, Bart De Moor, Joos Banewale. Fetal ECG extraction by blind source subspace separation[J]. IEEE Transactions on Biomedical Engineering, 2000,47(5):567-572.
  • 9[8]Ricardo Vigario, Jaako Sarela, Beikko Jousmiiki et al. Independent component approach to the analysis of EEG and MEG recordings[J]. IEEE Tansactions on Biomedical Engineering,2000,47(5):589-593.
  • 10Birbaumer N, Heetderks W J. Brain-computer Interface Technology: A Review of the First International Meeting. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2000, (8):164-173

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部