期刊文献+

多级模糊协方差聚类算法 被引量:1

MULTI-STEP CLUSTERING WITH FUZZY COVARIANCE MATRIX
原文传递
导出
摘要 模糊协方差聚类算法实质是一种局部寻优搜索方法,其收敛结果易陷入局部极小.本文结合分级聚类的思想,提出了一种改进算法.实验结果表明改进算法得到最优解的比例提高了. Fuzzy covariance clustering is an extension to fuzzy C-means algorithm that is essentially a partially optimization searching usually leading to local minimum results. In this paper, an approach of merging operations is presented for redundant initialization, so as to inherit the advantages of non-local minima of hierarchical clustering techniques, and overcome its shortage of being static. Two proposed merging criteria based on similarity information laid in fuzzy partition matrix are tested on simulated data set with Gaussian distribution and on line-circle mixture set, which show the significant improvement in converging to the global optimal solutions.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2002年第3期322-325,共4页 Pattern Recognition and Artificial Intelligence
基金 安徽省教育厅科学基金(2000J1023)
关键词 多级模糊协方差聚类算法 模糊协方差矩阵 局部极小 分组聚类 数据分析 Clustering, Fuzzy Covariance Matrix, Local Minimum
  • 相关文献

参考文献5

  • 1Gustafson D E,Kessel W C.Fuzzy Clustering with a Fuzzy Covariance Matrix[].Proc of the IEEE Conference on Decision and Control.1979
  • 2Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster[].Journal of Cybernetics.1974
  • 3Frigui H,Krishnapuram R.Clustering by competitive agglomeration[].Pattern Recognition.1997
  • 4Chi-Chun Lo,Shuenn-Jyi Wang.Video segmentation using a histogram-basedfuzzy c-means clustering algorithm[].Computers and Standards.2001
  • 5Karayiannis N B.A Methodology for Constructing Fuzzy Algorithms for Learning Vector Quantization[].IEEE Transactions on Neural Networks.1997

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部