期刊文献+

参数估计决策树算法 被引量:2

DECISION TREE BY PARAMETER ESTIMATION
原文传递
导出
摘要 本文提出了一种新的决策树算法.引入了基于统计估计的方法,并针对学习问题做了修正,同时考虑了特征提取和特征选择的因素.基于UCI数据的实验结果以及实际应用的测试结果都表明,本文方法比C4.5的判决精度更高,计算速度更快. Feature extraction, which decides the distribution of examples in feature space, and feature selection, which decides the suitable features for shaping best classifier, are both important for classification. But conventional methods for making decision tree such as C4. 5 think little about the former. Different from the entropy based inductive learning methods, a new method that considers both feature extraction and feature selection is proposed. Statistical estimation methods are introduced and modified for learning in the proposed method, selecting and deciding the kind of distribution shadowed on a certain dimension that is best for class discrimination. Evaluation results tested on UCI datasets and real applications show that the proposed method is much faster in making tree and has higher predictive accuracy than C4. 5 algorithm does.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2002年第3期330-333,共4页 Pattern Recognition and Artificial Intelligence
关键词 算法 机器学习 决策树 参数估计 判决精度 Machine Learning, Decision Tree, Parameter Estimation
  • 相关文献

参考文献1

  • 1Leo Breiman. Bagging predictors[J] 1996,Machine Learning(2):123~140

同被引文献16

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部