摘要
在简述了提升方法的基础上讨论了一种从整数到整数的变换方法———整数小波变换 (IWT) ,然后把它应用于图像无损 有损压缩等领域 本文对IWT现存的几个主要问题 ,如IWT与消失矩的关系、IWT与离散小波变换 (DWT)有损压缩效果的比较以及不同边界延拓方式对IWT压缩效果的影响等问题 ,进行了深入的探讨 ,得出了一些重要的结论
Integer wavelet transform (IWT) is a method that map integers to integers based on lifting scheme, which plays a more and more important role in the field of lossy/lossless image compression. Some questions about IWT, such as the relationship between IWT and vanish moment, the comparison between IWT and DWT in lossy compression, and the effect on the compression by different edge extensions, have been discussed in the paper, and some important conclusions have been drawn. The conclusions will play an important directive role in the inner mechanism understanding of IWT and the compression of signals such as Images.
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2002年第5期617-620,共4页
Journal of Wuhan University:Natural Science Edition
基金
国家自然科学基金资助项目 (5 0 0 9962 0 )