期刊文献+

Experimental study of vibration mitigation of mast arm signal structures with particle-thrust damping based tuned mass damper 被引量:2

Experimental study of vibration mitigation of mast arm signal structures with particle-thrust damping based tuned mass damper
下载PDF
导出
摘要 Large amplitude vibration of mast arm structures due to wind loads are the primary contributing factor to the reduced fatigue life of signal support structures. To alleviate this problem of wind-induced in-plane vibration of mast arm signal structures, a particle-thrust damping based turned mass damper(PTD-TMD) device is adopted and its damping effect is characterized experimentally. The particle-thrust damping is a passive damping device that does not require electric power and is temperature independent. Based on the calibration test, an equivalent dynamic model of the PTD-TMD device is developed and used for numerical simulation study. The damping effects of this PTD-TMD device on signal support structures was investigated through both numerical analysis and laboratory testing of a 50-ft(15.24 m) mast arm structure including both free vibration and forced vibration tests. The experimental test and numerical study results show that vibration response behavior of mast arm signal support structures can be significantly reduced by installing the PTD-TMD that can increase the critical damping ratio of the mast arm signal structures to 4%. The stress range at the welded connection between the mast arm and traffic pole is also reduced. Large amplitude vibration of mast arm structures due to wind loads are the primary contributing factor to the reduced fatigue life of signal support structures. To alleviate this problem of wind-induced in-plane vibration of mast arm signal structures, a particle-thrust damping based turned mass damper(PTD-TMD) device is adopted and its damping effect is characterized experimentally. The particle-thrust damping is a passive damping device that does not require electric power and is temperature independent. Based on the calibration test, an equivalent dynamic model of the PTD-TMD device is developed and used for numerical simulation study. The damping effects of this PTD-TMD device on signal support structures was investigated through both numerical analysis and laboratory testing of a 50-ft(15.24 m) mast arm structure including both free vibration and forced vibration tests. The experimental test and numerical study results show that vibration response behavior of mast arm signal support structures can be significantly reduced by installing the PTD-TMD that can increase the critical damping ratio of the mast arm signal structures to 4%. The stress range at the welded connection between the mast arm and traffic pole is also reduced.
出处 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第1期219-231,共13页 地震工程与工程振动(英文刊)
基金 partially supported through a research grant from Maryland State Highway Administration (MdSHA) and National Transportation Research Center at University of Maryland
关键词 FATIGUE MAST arm signal support STRUCTURES tuned mass DAMPER vibration fatigue mast arm signal support structures tuned mass damper vibration
  • 相关文献

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部