摘要
利用平面曲线基本定理和议程参数化方法,证明了Gage是嵌入平面闭凸曲线的保面积曲率流方程等价于一个非线性微分—积分方程组的初值问题。
The plane curvature flow problem is an active field in geometry and geometry analysis. In this paper, that the area-preserving evolution equation for convex closed plane curves in Gage is equivalent to a nonlinear differentio-integral equations with initial value is proved.
出处
《三峡大学学报(自然科学版)》
CAS
2002年第5期458-460,共3页
Journal of China Three Gorges University:Natural Sciences
基金
上海理工大学青年科研基金(X290)
关键词
注记
保面积
平面曲率流
等价
微分-积分方程组
area-preseving
plane curvature flow
equivalence
different io-integral system