摘要
Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups:augmentation group and non-augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow-compression-screw,the ini tial mobile force and the maximal axial pull-out strength for augmentation group,non-augmentation group in-creased from(192.7±14.0)N and(202.8±14.0)N to(328.5±34.7)N and(347.8±31.2)N.There was significant difference of two groups(P <0.01).Conclusion CCPC can enhance hollow-compressio n-screw fixation in osteoporotic fe moral neck.
Objective To evaluate the biomechanics of hollow-compression-screw in the osteoporotic femoral neck with composite c alcium phosphate cement (CCPC).Methods Sixteen femurs of superior segment were randomly divided into two groups:augmentation group and non-augmentation group.CCPC was used in augmentation group.Result Augmentation with CCPC would improve the initial mobile force of hollow-compression-screw,the ini tial mobile force and the maximal axial pull-out strength for augmentation group,non-augmentation group in-creased from(192.7±14.0)N and(202.8±14.0)N to(328.5±34.7)N and(347.8±31.2)N.There was significant difference of two groups(P <0.01).Conclusion CCPC can enhance hollow-compressio n-screw fixation in osteoporotic fe moral neck.
出处
《中国临床康复》
CSCD
2002年第20期3133-3133,共1页
Chinese Journal of Clinical Rehabilitation
关键词
骨质疏松
股骨颈
复合磷酸钙骨水泥
加压空心踝钉
生物学研究
osteoporotsis
femoral neck
hollo w-compression-screw
composite ca lcium phosphate cement
biomechani cs