期刊文献+

基于MSF技术的汽轮发电机状态估计 被引量:2

ESTIMATING THE CONDITIONS OF THE TURBINE-GENERATOR BY USING A MULTISENSOR FUSION
下载PDF
导出
摘要 该文提出一个有效的基于径向基函数神经网络的模型和状态数据融合的汽轮发电机智能估计方法。文中阐述了其网络结构、学习算法、特征提取及综合决策方法。该模型同时利用了故障样本及专家经验知识,并通过不断学习新的样本获取新的知识,模型将越来越完善。仿真结果表明,该网络模型和信息融合方法是可行和有效的。 An efficient model based on radial basis function neural network and intelligent estimating method for data fusion of the turbine-generator is presented. The network structure, learning algorithm, feature extraction and synthetic decision are described. The model makes use of fault samples and original expert experience and knowledge, and it will be perfected increasingly by means of continuous learning. Simulation results show that the proposed network model and information fusion method are very feasible and efficient.
作者 施惠昌
出处 《中国电机工程学报》 EI CSCD 北大核心 2002年第11期149-152,共4页 Proceedings of the CSEE
关键词 MSF技术 汽轮发电机 状态估计 多传感器融合 径向基函数神经网络 multisensor fusion radial basis function neural network generator condition estimating
  • 相关文献

参考文献5

  • 1David L. Hall. An introduction to multisensor data fusion [J]. Proceedings of the IEEE,1997,85(1):6-23.
  • 2Miroslav Kubat. Decision trees can initialize radial-basis function networks [J]. IEEE Trans on Neural Networks, 1998,9(5):813-821.
  • 3Lu Yingwei, et al. Performance evaluation of a sequential minimal radial bas is function (RBF) neural network learning algorithm [J]. IEEE Trans on Neural Ne tworks, 1998,9(2):308-318.
  • 4Andrew R. Webb, Simon Shannon. Shape-adaptive radial basis functions [J], IE EE Trans on Neural Networks, 1998,9(6):1155-1166.
  • 5沈标正(Shen Biaozheng).电机故障诊断技术(Fault diagnosis technique for electr ical machines )[M].北京:机械工业出版社(Beijing :China Machine Press),1996,5 .

同被引文献16

引证文献2

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部