摘要
讨论了电力市场经济稳定性问题的特点、模型 ,及其与电力系统物理稳定性的关系。电力生产和消费必须每时每刻平衡 ,其流通环节在物理和技术上都具有自然垄断性 ,但其生产规模的扩大却需要很长的时滞。一方面 ,为了充分利用稳定极限输电能力 ,并正确地对发电和输电投资进行引导 ,在输电费中必须考虑物理系统失稳的风险 ,从而影响到电力市场经济稳定性 ;另一方面 ,电力市场通过发电竞争以及对发电和输电的投资影响到电力系统物理稳定性。经济领域现有的动态模型和稳定性研究方法都不适用于电力市场 ,必须重新定义状态变量 ,建立合理的数学模型 ,正确地反映利润积累、投资行为、可用发电容量和可用输电容量的动态行为 ,正确地反映电力市场经济动态与电力系统物理动态之间的相互影响。市场的各参与者可以在仿真系统提供的平台上 ,选用代数方程、微分方程、差分方程 ,以及知识表达式来自己定义交易结算规则或各自的博弈策略。如同虚拟作战指挥仿真系统 ,这些主观决策是仿真系统的输入信息 ,而并非由仿真算法固定。在用数值仿真得到电力市场对扰动的时间响应曲线后 ,就可利用轨迹保稳降维 (TSPDR)理论 ,根据实际的高维轨迹来提取有界稳定性信息及结构稳定性信息。例如 ,计算电力系统动态阻塞的风险 ,求取电力?
Power markets are largely different from other markets in nature. Their differences, which significantly influence the economic dynamics, in goods production, storage, transmission, consumption, trade settlement, auxiliary service and investment etc, are summed up in this paper. The very strong interactions between power market dynamics and power systems stability are investigated as well. With the defined state variables, a frame-model and a simulation platform are proposed for studying the integrated physic-economic power system. The market rules as well as the game strategies are input by participants in forms of logic-difference-differential-algebraic expressions just like what happened in battle simulators. After integrating the established model and obtaining the whole time-responses, the stability-preserving trajectory-reduction method is applied to analyze both bounded stability and structure stability. The key idea is to map the actual time-responses curves into a set of R 2 planes by using suitable linear transformation with stability preserving. Therefore, stability can be quantitatively measured, and routes to both divergence and chaos can be deeply understood.
出处
《电力系统自动化》
EI
CSCD
北大核心
2002年第21期1-6,33,共7页
Automation of Electric Power Systems
基金
国家重点基础研究专项经费资助项目 (G19980 2 0 30 1)
国家自然科学基金资助项目 (5 992 0 0 37)
国家电力公司科技项目(SP11- 2 0 0 1- 0 1- 0 4- 0 2 )