期刊文献+

Anderson—Gr■neisen参量与晶体弹性模量对压强的一阶导数之间的新关系

A New Ralationship for the Anderson—Grüneisen Parameter and the First Dericative of Bulk Modulus with Respect to Pressure
下载PDF
导出
摘要 Anderson认为Anderson-Grüneisen参量与晶体弹性模量对压强的一阶导数相等,即δ_T=(((?)B_T)/((?)P))_T;Chang认为δ_T=(((?)B_T)/((?)P))_T—1。本文指出Anderson和Chang的结论与实验结果不符,并从热力学理论推导出δ_T=(((?)B_T)/((?)P))_T+q-1;得到了晶体的热膨胀系数α(T,P),等温体积弹性模量B_T(T,P)和体积V之间的美系式:(α(T,P)·B_T(T,P))/(α(T,O)·B_T(T,O))=(V_0/V)^(1-P);正确地解释了Yagi的实验结果。 Anderson Considers the Anderson- Gruneisen parameter δr is equal to e first dericative of crystal's bulk modulus with respect to pressure: (δB_T/δP)_T, whereas Chang considers δ_T=(δB_T/δP)T—1. In this paper, We point out that both results do not agree with the experimental esults, nd a new ralationship for the δT and the (δB_T/δP)_T is derived: δ_T=(δB_T/δP)_T—1+q; and the alationship between the thermal expansivity α(T, p), the bulk modulus B_T (T, p) and the volume V s btained: α(T, P)B_T(T, P)/α(T, 0)B_T(T, 0)=(V_0/V)^(1_(-q)), Which correctly interpreted Yagi's xperimental results.
出处 《安徽师大学报》 1989年第3期21-2,共1页
关键词 晶体 弹性模量 参量 压强 一阶导数 Anderson-Grünisen parameter, Bulk modulus.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部