摘要
Anderson认为Anderson-Grüneisen参量与晶体弹性模量对压强的一阶导数相等,即δ_T=(((?)B_T)/((?)P))_T;Chang认为δ_T=(((?)B_T)/((?)P))_T—1。本文指出Anderson和Chang的结论与实验结果不符,并从热力学理论推导出δ_T=(((?)B_T)/((?)P))_T+q-1;得到了晶体的热膨胀系数α(T,P),等温体积弹性模量B_T(T,P)和体积V之间的美系式:(α(T,P)·B_T(T,P))/(α(T,O)·B_T(T,O))=(V_0/V)^(1-P);正确地解释了Yagi的实验结果。
Anderson Considers the Anderson- Gruneisen parameter δr is equal to e first dericative of crystal's bulk modulus with respect to pressure: (δB_T/δP)_T, whereas Chang considers δ_T=(δB_T/δP)T—1. In this paper, We point out that both results do not agree with the experimental esults, nd a new ralationship for the δT and the (δB_T/δP)_T is derived: δ_T=(δB_T/δP)_T—1+q; and the alationship between the thermal expansivity α(T, p), the bulk modulus B_T (T, p) and the volume V s btained: α(T, P)B_T(T, P)/α(T, 0)B_T(T, 0)=(V_0/V)^(1_(-q)), Which correctly interpreted Yagi's xperimental results.