摘要
1三次样条插值的基本原理本文采用以下的三次样条函数的插值公式:q_i(x)=ty_i+■y_(i-1)+△x_i[(k_(i=1)-d)t■~2-(k_i-d_i)t^2■],i=1,2,3,…,m(1)式中,△x_i=x_i-x_(i-1),t=(x-x_(i-1)j)/△x_i,■=1-t,△y_i=y_i-y_(i-1),△y_i/△x_i=d_i.x_i,y_i为已知的实验数据.三次样条函数是由(1)式所示的m个三次多项式组合而成的分段表示的函数.它适合于处理多个数据点且多弯曲的曲线问题,由(1)式可知,每一q_i(x)方程只有两个待定常教K_(i-1)和K_i.
It is described that the non-linear absorption of spectrophotometric ana- lysis is fitted with third spline function.The results calculated onmicrocom- puter show that the fitting accuracy of this method is much better than the third curve fitting method.
出处
《陕西师大学报(自然科学版)》
CSCD
1991年第4期89-90,共2页
Journal of Shaanxi Normal University(Natural Science Edition)
关键词
亲条函数
插值
光化学分析
比色法
spline function
spechopholometric analysis
fitting