期刊文献+

非线性振动理论中的非线性模态对应原理探讨 被引量:3

Nonlinear Mode Correspondence Principle in Nonlinear Vibration Theory
下载PDF
导出
摘要 提出了非线性振动理论中的非线性模态对应原理 ,并给出了该原理的证明。非线性模态对应原理指出 :无论非线性振动系统具有相似模态还是具有非相似模态 ,n个自由度的非线性振动系统至少具有n个非线性模态 ,且这n个非线性模态形式上对应于该非线性振动系统对应的线性振动系统的n个线性模态。 In this paper, the nonlinear mode correspondence principle in nonlinear vibration theory is proposed and proved. The principle suggests that a nonlinear vibration system with n degrees of freedom has no less than n nonlinear modes that correspond to n linear modes of the corresponding linear vibration system, no matter the nonlinear vibration system possesses either similar normal modes or dissimilar ones. The calculation example shows that the proposed principle can be applied to seeking the nonlinear modes that are corresponding to the linear mode of the corresponding linear system of the nonlinear one.
出处 《西南交通大学学报》 EI CSCD 北大核心 2002年第B11期20-25,共6页 Journal of Southwest Jiaotong University
基金 中国工程物理研究院重大预研基金资助项目 (2 0 0 0Z0 30 7)
关键词 非线性模态对应原理 非线性振动理论 模态分析 非线性模态 线性模态 自由度 相似模态 theory of nonlinear oscillation modal analysis nonlinear modes linear modes
  • 相关文献

参考文献19

  • 1Kauderer H. Nichtlinear meehanik[M]. Berlin: Springer, 1958:10-100.
  • 2Rosenberg R M. Normal modes of non-linear dual-mode systems[ J]. J. Appl. Mech. , 1960; 27(2) : 263-268.
  • 3Rosenberg R M. On normal vibration of a general class of non-linear dual-mode systems[J]. J. Appl. Mech. , 1961; 28(2) : 275-283.
  • 4Rosenberg R M. The normal modes of nonlinear n-degree-of-freedom systems[J]. J. Appl. Mech. , 1962; 29( 1 ): 7-14.
  • 5Rosenberg R M. On nonlinear vibrations of systems with many degrees of freedom [ J ]. Advances in Applied Mechanics,1966 ; 9 : 155-242.
  • 6Vakakis A F, Rand R H. Normal modes and global dynamics of a two degree of freedom nonlinear system - Ⅰ, low energies[J]. Int. J. Nonlinear Mech. , 1992; 27(5) : 861-874.
  • 7Vakakis A F, Rand, R H. Normal modes and global dynamics of a two degree of freedom nonlinear system - Ⅱ, high energies[J]. Int. J. Nonlinear Mech., 1992; 27(5):875-888.
  • 8Vakakis A F. Nonsimilar normal mode oscillations in a strongly nonlinear discrete systems [ J ]. J. Sound and Vibration,1992; 158(2) : 341-361.
  • 9King M E, Vakakis A F. An Energy-based formulation for computing nonlinear normal modes in undamped continuous systems[ J]. Transactions of the ASME Journal of Vibration and Acoustics, 1994; 11 (6) : 332-340.
  • 10刘练生 黄克累.一种用于非线性振动系统的模态分析方法[J].力学学报,1988,20(1):41-48.

二级参考文献2

  • 1吴志强,博士学位论文,1996年
  • 2陈予恕,非线性振动系统的分叉和混沌理论,1993年

共引文献17

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部