期刊文献+

普通话连续数字串语音识别的持续时间模型

Duration Modeling for Continuous Mandarin Digital Speech Recognition
下载PDF
导出
摘要 在普通话连续数字串的识别中 ,与传统 HMM在持续时间模型上的错误假设有关的删除与插入错误所占比例可达 2 4 .2 3% .基于此 ,在 Viterbi解码中引入持续时间模型信息 .对多种带参函数分布的持续时间模型在理论和实验上的比较分析都证明了 Gamma分布更能精确反映汉语字模型的持续时间特性 .文中还在外惩罚模型的基础上提出了预加重分段内惩罚持续时间模型和全局内惩罚持续时间模型两种改进算法 .实验表明 ,结合持续时间模型的语音识别算法可以有效地减少删除与插入错误率 ,使总体识别错误率比基带系统减少了 47.74% . In a continuous Mandarin digit recognizer,the insertion and deletion errors related to the conventional HMM's false assumption on duration modeling amount to 24.23% in all recognition errors.This paper applied duration information into Viterbi decoding to overcome these errors. All the theoretic analysis on different parametric distributions and experiment results conclude that Gamma distribution comes out optimally characterize syllable level duration in Mandarin. In addition to ex penalty function, two forms of durational model were proposed: pre weighted in penalty function and global penalty function. The experimental results indicate that combining durational model with traditional recognition algorithm can effectively reduce both the deletion and insertion error rate and consequently about 47.74% total recognition error rate reduction is achieved over the baseline system.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第10期1529-1532,共4页 Journal of Shanghai Jiaotong University
关键词 普通话连续数字串 持续时间模型 VITERBI解码 连续语音识别 GAMMA分布 惩罚函数 duration model Viterbi decoding continuous speech recognition
  • 相关文献

参考文献6

  • 1Rabiner L R, Wilpon J G, Soong F K. High performance connected digit recognition using hidden Markov models [J]. IEEE Trans Acoust, Speech, Signal Processing, 1989, ASSP-37:1214-1225.
  • 2Kwon W, Kwan C. Performance of connected digit recognizers with context-dependent word duration modeling [A]. Proc IEEE Asia Pacific Conf on Circuits and Systems'96 [C]. Seoul, Korea: APCCAS, 1996. 243-246.
  • 3Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition [A]. Proc IEEE Int Conf Acoust, Speech, Signal Processing [C]. Tampa,Mars: ICASSP, 1985. 5-8.
  • 4Levinson S E. Continuously variable duration hidden Markov models digit recognition [A]. Proc IEEE Int Conf Acoustic, Speech, Signal Processing [C]. San Diego, California: ICASSP,1984. 42.11.1-4.
  • 5Ferguson J D. Variable duration models for speech [A]. Proc Symp on the Application of Hidden Markov Models to Text and Speech [C]. New-Jersey: Princeton, 1980. 143-179.
  • 6Burshtein D. Robust parametric modeling of durations in hidden Markov models [A]. Proc IEEE Int Conf Acoust, Speech, Signal Processing [C]. Detroid, USA: ICASSP, 1995. 548-551.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部