摘要
本文提出了一种不完全平方距离矩阵在欧氏空间或伪欧空间中的二阶段嵌入法,使用这种方法可以有效地解决大分子结构的理论计算问题,其时间复杂度只是输入规模的线性量级。
This papcr has proposcd a method for the embcdding an mcompIetesquared dlsIancc mattix into an Euclidean spacc or Pscudo—Euclidcan space by two steps.That is cmbcdding a simplcx frst.then caculaIing the cartesian cootdlnatcs according tothe Caylev—Mcngcr coordinares of some object points.This mcthod can be used to soIvcthe probIcm of conformatioDal calcuIatIons of macromceuIes cfficcnlly and the complexity of time is O(N)only,where the numbcr N is the inputting sealc.
关键词
不完全平方
距离矩阵
C-M坐标
Incomplcte Squared Distance Matrix, Cayley-Menger Coordinate, Sub-eigenvaluc