期刊文献+

颗粒孔结构的积木分形模型 被引量:5

Fractal Model of Building Blocks for Pore Structure of Particles
下载PDF
导出
摘要 构造了立方和四面体两种积木分形体,得到一般积木分形体模型,导出关联表面积和体积增量的3个分形表达式,并分析了表面分数维的几何意义. 实验结果表明,利用该模型的表面积与体积增量分形表达式可以从压汞和BET的实验数据计算表面分数维,相关系数较高. 对同一种颗粒,两种实验方法可以得到相同的分数维. 讨论了体积增量的计算方法. Two fractal bodies of building blocks, cube and tetrahedron were structured and a general building blocks model was obtained, from which three fractal equations on surface area, volume increment, and their interrelation were derived to describe the pore structure of porous particles. The experimental results show that surface fractal dimension can be calculated from the data measured experimentally by mercury porosimetry or the BET method using the fractal equation on surface area and volume increment. The same value of fractal dimension can be obtained from the two methods for certain kind of porous particles. The geometrical meaning of surface fractal dimension and the calculation method of volume increment were also discussed.
出处 《过程工程学报》 CAS CSCD 北大核心 2002年第5期385-391,共7页 The Chinese Journal of Process Engineering
基金 国家自然科学基金重点资助项目(编号: 59934080)
关键词 积木分形模型 分数维 多孔颗粒 压汞法 BET法 fractal dimension porous particles mercury porosimetry BET method
  • 相关文献

参考文献9

  • 1Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman Co., 1982. 144-146.
  • 2Friesen W I, Mikular R J. Fractal Dimensions of Coal Particles [J]. J. Colloid Interface Sci., 1987, 120(1): 263-271.
  • 3Neimark A V. Calculating Surface Fractal Dimensions of Adsorbents [J]. Adsorption Sci. and Technol., 1990, 7(4): 210-219.
  • 4Pfeifer P. Structure Analysis of Porous Solids From Presorbed Films [J]. Langmuir, 1991, 7: 2833-2835.
  • 5Neimark A V. A New Approach to the Determination of the Surface Fractal Dimension of Porous Solods [J]. Physica A, 1992, 191: 258-260.
  • 6ZHANG B, LI S. Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry [J]. Ind. Eng. Chem. Res., 1995, 34: 1383-1386.
  • 7WANG F, LI S. Determination of the Surface Fractal Dimension for Porous Media by Capillary Condensation [J]. Ind. Eng. Chem. Res., 1997, 36: 1598-1602.
  • 8Kaye B H. 分形漫步 [M]. 徐新阳, 康雁, 陈旭, 等译. 沈阳: 东北大学出版社, 1994. 13-15.
  • 9王鲁英. 多孔颗粒孔结构的分形表征 [D]. 北京: 中国科学院化工冶金研究所. 1999. 8-21.

同被引文献85

  • 1邓东芳.正交圆柱圆锥相贯线极右点的形数分析[J].鞍山科技大学学报,2000,23(1):49-51. 被引量:5
  • 2杨培中.工程图学中常见问题剖析[J].江苏大学学报(自然科学版),2006,27(B09):45-48. 被引量:3
  • 3[1]Yanagisawa T, Shimozu T, Kuroda K[J]. Bull Chem Soc Jpn, 1990,63: 988.
  • 4[2]Beck J S,Vartuli J C,Roth W J[J] .J Am Chem Soc,1992,114:10834.
  • 5[3]Kresge C T,Leonowicz M E,Roth W J[J] .Nature, 1992 , 359 : 710.
  • 6[4]Ying J Y,Mehnert C P,Weng M S[J].Angew Chem Int Ed,1999,38:56.
  • 7[5]Whitesides G M,Mathias J P,Seto C T[J] .Science,1991,254:1312.
  • 8[6]Laudise R A.Advanced Crystal Growth[M] . New York,Sydney,Tokyo:Prentice Hall,1987.
  • 9[7]Eapen M J,Reddy K S N,Shiralkar V P[J] .Zeolite,1994,14:295.
  • 10[8]Aguado J,Serrano D P,Escola J M[J] .Micropor Mesopor Mater, 2000,34:43.

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部