摘要
利用多模压缩态理论 ,通过数值计算研究了高QKerr介质腔中非关联双模相干态光场与V型三能级原子相互作用系统中光场的等幂次和压缩效应 .结果表明 :1 )当Kerr介质的非线性系数x≠ 0时 ,相互作用系统中双模光场存在间断的等幂次和压缩效应 .在相同的介质环境和光强的情况下 ,最大压缩度发生在一次等幂次和压缩度的第一正交分量和二次等幂次和压缩度的第二正交相位分量上 .2 )不论介质和光场强度如何变化 ,在不考虑坐标轴标度的情况下 ,任意幂次的等幂次和压缩度的时间演化曲线的形状非常相似 .都显示”崩坍 复原 凹谷”式结构 ,且复原区的波型振荡次数及凹谷区的振荡下降和振荡上升型式一样 .3)演化曲线的周期强烈地依赖于Kerr介质的非线性系数 ,且反比于该系数 .演化曲线的幅度强烈地依赖于光场强度 ,并随着场强的增加而增大 .4)等幂次和压缩度的大小随压缩次数的升高而迅速下降 (N >2 ) ,但却随着平均光子数的增加而增大 .
It is studied the 1st to the 4 th power equal power sum squeezing degrees Sh Nm (N=1,2,3,4; m=1,2 ) of the fields in the system of two mode non correlated coherent state light field interacted with the V type three level atom in the higher Q Kerr medium cavity are studied. The result indicates that: 1) When x≠0, there are N th power equal power sum squeezing effects of fields in this system. 2) The structures of the evolution curve for any power equal order H squeezing degree are very similar and shown a periodic 'collapse revival valley' structures. The number of the primary and secondary peaks of the curves in revival time and the oscillating times of the curves in valley are equal. 3) the period of ShNm depends intensively on Kerr nonlinear coefficients(KNC) x and is inversely proportional to both KNC and the power of the curve. The amplitude of the curves in revival and collapse time depends intensively on average number of photons(ANP) and it increases with the increasing of ANP. 4) the depth of Sh N1 and Sh N2 decrease with the increasing of power of the curves N>2 and increase with the increasing of ANP. The duration of the sum squeezing effects is inversely proportion to the KNC.
出处
《光子学报》
EI
CAS
CSCD
北大核心
2002年第9期1063-1068,共6页
Acta Photonica Sinica
基金
Project supported by the funds df the Natral Science of Shaanxi Province(N0.2001SL04
2000SL10),by the Funds of the Specialized Scientific Rresearch of Educational Committee of Shaanxi Province(N0.99JK091
00JK115),by the funds of the Natural Scienc of Nor