期刊文献+

自动分层推荐算法 被引量:1

AUTOMATIC LAYERED RECOMMENDATION ALGORITHM
下载PDF
导出
摘要 推荐是Web个性化服务的核心。提出一种自动分层推荐算法 ,利用页面分层自动选择最佳的匹配粒度 ,进行基于频繁导航路径的推荐。实验结果表明 ,该算法大大减少了在线匹配的开销 ,可以成功地应用到Web日志挖掘中。 Recommendation is the kernel of Web personalization. In this article, we propose an automatic layered recommendation algorithm, which uses page layering to automatically choose the optimal matching granularity and to make recommendation based on frequent navigation paths. The experimental results show that it greatly reduces online cost, and can be successfully applied to Web log mining.
出处 《计算机应用》 CSCD 北大核心 2002年第11期8-10,共3页 journal of Computer Applications
基金 国家自然科学基金项目 (50 0 0 70 0 1 ) 广东省自然科学基金项目 (990 582 ) 广州市科委基金项目 (2 0 0 0 -J- 0 0 6 - 0 1 )
关键词 自动分层推荐算法 数据库 数据挖掘 WEB recommendation algorithm page layering Web mining
  • 相关文献

参考文献6

  • 1Cooley R.,Mobasher B.,Srivastava J.Web Mining: Information and Pattern Discovery on the World Wide Web[A].Proceedings of the International Conference on Tools with Artificial Intelligence[C].USA: IEEE,1997.558-567.
  • 2Mobasher B.,Cooley R.,Srivastava J.Automatic PersonalizationBased on Web Usage Mining[J].Communications of the ACM,2000,43(8): 142-151.
  • 3复旦大学计算机系数据挖掘讨论组.基于Web的个性化服务[EB/OL].http://www.dmgroup.org.cn/WebIndiv.ppt,2000.
  • 4曾炜,向子贵,彭宏.一种改进的基于频繁遍历路径的推荐算法[J].广东商学院学报,2001,16(5):90-93. 被引量:3
  • 5李颖基,彭宏,郑启伦.一种新的快速挖掘用户导航路径算法[J].华南理工大学学报(自然科学版),2002,30(3):9-12. 被引量:5
  • 6Fu Y.,Sandhu K.,Shih M.Clustering of Web Users Based on Access Patterns[A].WEBKDD′99[C].USA: ACM,1999.

二级参考文献13

  • 1[1]Pei J,Han J W,Mortazavi-asl B,et al.Mining access pattern efficiently from Web logs [A].In:Terano T,Liu H,Chen A L P,eds.Knowledge Discovery and Data Mining,Proceedings-Current Issues and New Applications [C].Berlin,Germany:Springer Verlag,2000.396-407.
  • 2[2]Mobasher B,Jain N,Han E,et al.Web mining:Pattern discovery from World Wide Web transactions [R].Minnesota,USA:Department of Computer Science,University of Minnesota,1996.
  • 3[3]Xiong H,Sung S Y,Huang S.Adapting the right Web pages to the right users [A].In:Dasarathy B V,ed.Data Mining and Knowledge Discovery:Theory,Tools,and Technology II [C].Bellingham, Washington,USA:SPIE-INT SOC Optical Engineering,2000.380-387.
  • 4[4]Spiliopoulou M,Faulstich L C. WUM:A tool for Web utilization analysis [A].In:Atzeni P,Mendelzon A,Mecca G,eds.World Wide Web and Databases [C].Berlin,Germany:Springer Verlag,2000.184-203.
  • 5[5]Spiliopoulou M,Faulstich L C,Winkler K.A data miner analyzing the navigational behavior of Web users [A].In:Zytkow J,Rauch J,eds.Principles of Data Mining and Knowledge Discovery [C].Berlin,New York:Springer,1999.588-589.
  • 6[6]Borges J,Levene M.Data mining of user navigation patterns [A]. In:Masand B,Spliliopoulou M,eds.Proc the Workshop on Web Usage Analysis and User Profiing [C].Berlin,Germany:Springer Verlag,1999.31-36.
  • 7Chen M S,Park J S,Yu P S.Data Mining for Path Traversal Patterns in a Web Environment.In:Proc.Of the 16 International Conference on Distributed Computing Systems,1996:385-392.
  • 8杨仪玲. WEB日志挖掘中的数据准备与用户浏览模式识别[D].西安交通大学,1999年.
  • 9A.Buchner and M.D.Mulvenna.Disoveriug internet marketing intelligence through online analytical Web usage mining.SIGMOD Record,1999,(4):27.
  • 10Weiyang Lin,Sergio A.Alvarez,ect.Collaborative Recommendation via Adaptive Assoeiation Rule Mining.WEBKDD 2000 Papers.

共引文献6

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部