期刊文献+

基于改进差分演化的高效图像分割算法 被引量:4

High efficient image segmentation algorithm based on improved differential evolution
下载PDF
导出
摘要 差分演化算法的实现简单有效,但其搜索能力较弱,对此提出一种基于贝塔分布的控制参数动态设置策略以提高差分演化的优化效果,并将其应用于图像分割问题。首先,将图像的直方图按强度分为两类,并按类内方差、类间方差与总方差总结为待优化的目标函数;然后,使用改进的差分演化算法搜索图像分割目标函数的最优解,其中在每轮迭代中使用贝塔分布动态的设置控制参数。仿真实验表明,该方法获得了较好的优化结果,并获得了较好的图像分割效果。 The differential evolution algorithm is effective and easy to realize,but it has poor search ability,so a controlparameter dynamic setting strategy based on beta distribution is proposed to improve the optimization effect of the differential evo?lution,and applied to the image segmentation. In the scheme,the image histograms are divided into two classes according theirintensity,and summarized to the waiting optimization target function according to the inner?class variance,inter?class varianceand total variance. And then,the improved differential evolution algorithm is used to search the optimal solution of the imagesegmentation target function,in which the beta distribution is used to set the control parameters dynamically in each iteration.The simulation experiment results show that the proposed method can obtain better optimal result and good image segmentationeffect.
作者 范泽华 白铁成 FAN Zehua;BAI Tiecheng(College of Information Engineering,Tarim University,Alar 843300,China)
出处 《现代电子技术》 北大核心 2016年第14期87-91,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(41561088)
关键词 贝塔分布 差分演化 图像分割 阈值化分割 控制参数 beta distribution differential evolution image segmentation thresholding segmentation control parameter
  • 相关文献

参考文献13

  • 1刘松涛,殷福亮.基于图割的图像分割方法及其新进展[J].自动化学报,2012,38(6):911-922. 被引量:142
  • 2张志斌,罗锡文,臧英,厚福祥,徐晓东.基于颜色特征的绿色作物图像分割算法[J].农业工程学报,2011,27(7):183-189. 被引量:86
  • 3OSUNA.ENCISO V,CUEVAS E,SOSSA H. A comparison ofnature inspired algorithms for multi.threshold image segmenta.tion [J]. Expert systems with applications,2013,40(4):1213-1219.
  • 4MANIKANDAN S,RAMAR K,IRUTHAYARAJAN M W,etal. Multilevel thresholding for segmentation of medical brainimages using real coded genetic algorithm [J]. Measurement,2014,47(1):558-568.
  • 5GHAMISI P,COUCEIRO M S,BENEDIKTSSON J A,et al.An efficient method for segmentation of images based on frac.tional calculus and natural selection [J].Expert systems withapplications,2012,39(16):2407-2417.
  • 6SATHYA P D,KAYALVIZHI R. Modified bacterial foraging al.gorithm based multilevel thresholding for image segmentation[J]. Engineering applications of artificial intelligence,2011,24(4):595-615.
  • 7BHANDARI A K,SINGH V K,KUMAR A,et al. Cuckoosearch algorithm and wind driven optimization based study ofsatellite image segmentation for multilevel thresholding usingKapur’s entropy [J]. Expert systems with applications,2014,41(7):3538-3560.
  • 8阿里木·赛买提,杜培军,柳思聪.基于人工蜂群优化的二维最大熵图像分割[J].计算机工程,2012,38(9):223-225. 被引量:16
  • 9COELHO L D S,MARIANI V C,LEITE J V. Solution of Jiles.Atherton vector hysteresis parameters estimation by modifieddifferential evolution approaches [J]. Expert systems with appli.cations,2012,39(2):2021-2025.
  • 10孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法[J].计算机学报,2008,31(2):228-235. 被引量:68

二级参考文献131

共引文献307

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部