摘要
Sediment-hosted hydrate reservoir often contains saturated pore fluid, which changes the heat transfer and mass transfer characteristics of the hydrate reservoir. The exploitation of hydrate under saturated pore fluid using depressurization is simulated experimentally to investigate the influence of particle size of porous media, dissociation temperature, pressure drop and injected fluid type on gas production behavior. Homogeneous methane hydrate was firstly formed in frozen quartz sand. With the formed hydrate sample, hydrate dissociation experiments by depressurization were conducted. The test results showed that the gas production rate of hydrate under saturated pore fluid was substantially influenced by the particle size, the pressure drop and the injected fluid type, while it was influenced little by the dissociation temperature. The hydrate dissociates faster under larger pressure drop and in the presence of smaller porous media within the experimental region. The dissociation rate increases with an increasing fluid salinity in the initial stage, while it decreases in the later stage. The increase of gas diffusion resistance resulted from ionic hydration atmosphere in saturated chloride solution impeded the dissociation of hydrate. It can be solved by increasing the pressure drop and decreasing the fluid salinity in the process of gas recovery from hydrate reservoir.
Sediment-hosted hydrate reservoir often contains saturated pore lfuid, which changes the heat transfer and mass transfer characteristics of the hydrate reservoir. The exploitation of hydrate under saturated pore lfuid using depressurization is simulated experimentally to investigate the inlfuence of particle size of porous media, dissociation temperature, pressure drop and injected lfuid type on gas production behavior. Homogeneous methane hydrate was ifrstly formed in frozen quartz sand. With the formed hydrate sample, hydrate dissociation experiments by depressurization were conducted. The test results showed that the gas production rate of hydrate under saturated pore lfuid was substantially inlfuenced by the particle size, the pressure drop and the injected lfuid type, while it was inlfuenced little by the dissociation temperature. The hydrate dissociates faster under larger pressure drop and in the presence of smaller porous media within the experimental region. The dissociation rate increases with an increasing lfuid salinity in the initial stage, while it decreases in the later stage. The increase of gas diffusion resistance resulted from ionic hydration atmosphere in saturated chloride solution impeded the dissociation of hydrate. It can be solved by increasing the pressure drop and decreasing the lfuid salinity in the process of gas recovery from hydrate reservoir.
基金
supported by the National Natural Science Foundation of China(Grant No.51304079,Grant No.51474112,Grant No.41502343 and Grant No.51506073)