期刊文献+

Lie-Poisson框架下一个新的Hamilton系统的可积性

Integrability of a New Hamiltonian System in the Lie-Poisson Framework
下载PDF
导出
摘要 研究一个3×3形式的谱问题的非线性化,证明了该3×3特征值问题的非线性化是具有Lie-Poisson结构的Poisson流形R3N上的广义Hamilton系统.进一步,利用母函数法给出其可积性的证明. The nonlinearization of a 3×3 eigenvalue problem is presented. It is shown that this nonlinearized eigenvalue problem is a generalized Hamiltonian system with a Lie-Poisson structure on the Poisson manifold R3N.Further,its integrability is proved by the generating function method.
作者 薛珊 梁涵 Xue Shan;Liang Han(Hanan Vocational and Technical College of Communications,Zhengzhou 450000,China)
出处 《河南科学》 2016年第7期1017-1021,共5页 Henan Science
基金 河南交通职业技术学院院级科研项目(2015-YJXM-024)
关键词 LIE-POISSON结构 HAMILTON系统 非线性化特征值问题 Lie-Poisson structure Hamiltonian system nonlinearized eigenvalue problem
  • 相关文献

参考文献15

  • 1Cao Cewen,Geng Xianguo. Classical integrable systems generated through nonlinearization of eigenvalue problems[C].ProcConf on Nonlinear Physics(Shanghai 1989),Research Reports in Physics. Berlin:Springer,1990:66-78.
  • 2曹策问.AKNS族的Lax方程组的非线性化[J].中国科学(A辑),1989,20(7):701-707. 被引量:35
  • 3Cao Cewen. A Classical integrable system and the involutive representation of solutions of the KdV equation[J]. Acta Math Sinica,New Series 1991,7(3):216-223.
  • 4Geng Xianguo. Finite-dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalueproblem[J]. Journal of Mathematical Physics,1993,34(2):805-817.
  • 5Cao Cewen,Wu Yongtang,Geng Xianguo. Relation between the Kadometsev-Petviashvili equation and the confocal involutivesystem[J]. J Math Phys,1998,40:3948-3970.
  • 6Geng Xianguo,Cao Cewen. Quasi-periodic solutions of the 2+1 dimensional modified Korteweg–de Vries equation[J]. PhysicsLetters A,1999,261(5-6):289-296.
  • 7Wu Yongtang,Zhang Jinshun. Quasi-periodic solution of a new(2+1)-dimensional coupled soliton equation[J]. Journal ofPhysics A Mathematical & General,2001,34(1):193-210.
  • 8Xue Shan,Du Dianlou. A new hierarchy of(1+1)-dimensional soliton equations and its quasi-periodic solutions[J]. Chaos,Solitons & Fractals,2008,35(4):692-704.
  • 9Du Dianlou,Cao Cewen,Wu Yongtang. The nonlinearized eigenvalue problem of the Toda hierarchy in the Lie-Poissonframework[J]. Phys A,2000,285:332-350.
  • 10Du Dianlou,Cao Cewen. The Lie-Poisson representation of nonlinearized eigenvalue problem of the Kac-van Moerbekehierarchy[J]. Phys Lett A,2001,278:209-224.

二级参考文献9

  • 1曹策问.AKNS族的Lax方程组的非线性化[J].中国科学(A辑),1989,20(7):701-707. 被引量:35
  • 2Meyer K R. Symmetries and integrals in mechanics. In:Dynamical Systems. edited by M M Peixoto. New York:Academic Press, 1973: 259 ~ 272.
  • 3Marsden J E, Ratiu T S, Scheurle J. Reduction theory and the Lagrange-Routh equations. J Math Phys,2000, 41(6):3379 ~ 3429.
  • 4Olver P J. Applications of Lie Groups to Differential Equations. New York: Springer-Verlag,1986.
  • 5Marsden J E, Ratiu T S. Introduction to Mechanics and Symmetry. New York: Springer-Verlag, 1994.
  • 6Weinstein A. The local structure of Poisson manifolds. J Diff Geom, 1983, 18:523 ~ 557.
  • 7Du D L, Cao C W. The Lie-Poisson representation of the nonlinearized eigenvalue problem of the Kac-van Moerbeke hierarchy. Phys Lett A, 2001, 278:209 ~ 224.
  • 8曹策问.共焦对合系与一类AKNS特征值问题[J]河南科学,1987(01).
  • 9李翊神.一类发展方程和谱的变形[J]中国科学(A辑 数学 物理学 天文学 技术科学),1982(05).

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部