期刊文献+

基于CB模型的彩色图像混合噪声去除方法 被引量:4

Method for Removing Mixed Noises of Color Image Based on CB Model
下载PDF
导出
摘要 将分数阶偏微分理论和CB模型相结合应用于图像去噪,提出了一种基于分数阶偏微分方程和CB模型的彩色图像混合噪声去除方法.对于添加混合噪声(高斯噪声和椒盐噪声)的彩色图像,首先,利用MCM模型去除图像中的椒盐噪声,然后将处理后的彩色图像分解为色度C和亮度B两部分,用分数阶偏微分模型处理亮度B,而对于色度C,由于其受到单位长度的限制,在处理时非常困难,利用拉格朗日乘数法并通过添加辅助变量,将色度转化为两个近似的子问题,从而得到色度的近似处理方法,最后将处理后的亮度B和色度C合成为新的彩色图像.最后通过实验证明了该方法的有效性. Combining fractional-order differential theory with Chromaticity-Brightness(CB)model in order to deal with the mixture of the salt & pepper and Gaussian noises,a novel color image denoising model is proposed,which is based on fractional-order partial differential equation and CB model. For a color image with mixed noises(salt & pepper and Gaussian noises),the salt & pepper noise can be eliminated by the MCM model effectively. Then,the processed color image is decomposed into chromaticity component and brightness component. Secondly,we use fractional-order differential model for brightness component. For chromaticity component,we use Lagrange multiplier method and add an auxiliary variable to approximate the chromaticity. Thirdly,the retorted image is got by multiplying the recovered chromaticity with recovered brightness. Finally,we prove the validity of the proposed model through the experiments.
作者 周千 李文胜 Zhou Qian;Li Wensheng(School of Science,Xian Aerotechnical University,Xi’an 710077,China)
出处 《河南科学》 2016年第7期1037-1043,共7页 Henan Science
基金 陕西省教育厅专项科研计划项目(15JK1379) 西安航空学院科研基金资助项目(2016KY1214 2014KY1210)
关键词 彩色图像去噪 分数阶偏微分方程 CB模型 color image denoising fractional-order differential equation CB color model
  • 相关文献

参考文献19

二级参考文献93

  • 1刘祝华,邹道文,邓承志,汪胜前.一种新的基于噪声点检测的脉冲噪声去噪算法[J].计算机工程与应用,2005,41(15):41-43. 被引量:5
  • 2PERONA P, MALIK J. Scale-space and edge detection using aniso- tropic diffusion [ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1990, 12(7) : 629 -639.
  • 3YOU Y L, XU W, TANNENBAUM A, et al. Behavioral analysis of an isotropie diffusion in image processing [ J]. IEEE Transactions on Image Processing, 1996, 5(11) : 1539 - 1553.
  • 4KACUR J, MIKULA K. Slow and fast diffusion effects in image pro- cessing [J]. Computing and Visualization in Science, 2001, 3(4): 185 - 195.
  • 5RUDIN L, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [ J]. Physica D, 1992, 60(1/4): 259 -268.
  • 6RUDIN L, OSHER S, FATEMI E. Nonlinear total varia- tion based noise removal algorithms [ J ]. Physica D, 1992,60:259 - 268.
  • 7CHAMBOLLE A, LIONS P L. Image recovery via total variation minimization and related problems [ J ]. Number Math, 1997,76 (2) : 167 - 188.
  • 8LYSAKER M, LUNDERVOLD A, TAI X C. Noise remov- al using fourth - order partial differential equation with ap- plications to medical magnetic resonance images in space and time [ J ]. IEEE Transactions on Image Processing, 2003, 12(12) :1 579 -1 590.
  • 9YOU Y L, KAVEH M. Fourth -order partial differential equation for noise removal [J]. IEEE Transactions on Im- age Processing,2000,9(10) :1 723 -1 730.
  • 10LYSAKER M, OSHER S, TAI X C. Noise removal using smoothed normals and surface fitting [ J ]. IEEE Transac- tions on Image Processing, 2004,13 (10) :1 345 -1 357.

共引文献109

同被引文献38

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部