期刊文献+

基于Cost-Sensitive主成分分析的人脸识别

Face recognition based on Cost-Sensitive principal component analysis
下载PDF
导出
摘要 目前现有的人脸识别算法寻求最高的正确识别率,且假设所有的错误分类具有相同的错分代价,但此假设在现实的人脸识别系统中往往不成立。为此,提出一种基于代价敏感(Cost-Sensitive)主成分分析的人脸识别方法,该方法在主成分分析理论中引入一个代价敏感函数,将不同错误识别所造成的损失进行分类划分,以确定不同的损失代价,实现更精确的人脸识别。在AR、FERET和UMIST人脸数据集上的实验结果表明,与经典的基于子空间的人脸识别方法相比,提出的方法以最少的代价达到了较高的k最近邻分类识别精度。 Existing face recognition algorithms aim to achieve high recognition accuracy, implicitly assuming that all misclassificationslead to the same losses. This assumption, however, may not hold in the practical face recognition systems.Motivated by this concern, a new face recognition approach based on Cost-Sensitive Principal Component Analysis(Cost-Sensitive PCA)is proposed in this paper. It incorporates a cost sensitive function into Principal Component Analysistheory and determines the different loss cost by differentiating losses caused by different error recognition, which achievesmore accurate face recognition. The experimental results on AR, FERET and UMIST face databases show that the proposedmethod achieves higher k nearest neighbor classification recognition accuracy with the least cost compared with theclassical subspace-based face recognition methods.
作者 谢晋 陈延东 XIE Jin;CHEN Yandong(Computer School of Hubei Polytechnic University, Huangshi, Hubei 435003, China;College of Science, Wuhan University of Technology, Wuhan 430070, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第15期24-28,共5页 Computer Engineering and Applications
基金 湖北理工学院科研项目(No.13xjz05Q) 湖北理工学院校级重点科研项目(No.14xjz04A) 湖北省教育厅科学技术研究计划指导项目
关键词 代价敏感 主成分分析 人脸识别 k 最近邻 Cost-Sensitive Principal Component Analysis(PCA) face recognition k Nearest Neighbor(kNN)
  • 相关文献

参考文献1

二级参考文献26

  • 1Tu J L,Liu X M,Tu P. On optimizing subspaces for face recognition[A].New York,USA:IEEE Computer Society,2009.1149-1156.
  • 2Lu J W,Tan Y P. Cost-sensitive subspace learning for face recognition[A].San Francisco,CA:IEEE Computer Society,2010.2661-2666.
  • 3Rao A,Noushath S. Subspace methods for face recognition[J].Computer Science Review,2010,(1):1-17.
  • 4Wang Y,Wu Y. Face recognition using intrinsicfaces[J].{H}Pattern Recognition,2010,(10):3580-3590.
  • 5Turk M A,Pentland A P. Eigenface for recognition[J].{H}Journal of Cognitive Neuroscience,1991,(1):71-68.
  • 6Baelhumeur P N,Hespanha J P,Kriegman D J. Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(7):711-720.
  • 7Tenenbaum J B,De Silva V,Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].{H}SCIENCE,2000,(5500):2319-2323.
  • 8Roweis S T,Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].{H}SCIENCE,2000,(5500):2323-2326.
  • 9Belkin M,Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation[J].{H}Neural Computation,2003,(6):1373-1396.doi:10.1162/089976603321780317.
  • 10He X F,Niyogi P. Locality preserving projections[A].USA:The MIT Press,2003.153-160.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部