期刊文献+

有限Morrey空间内一类离散时滞系统的周期解唯一性分析

Uniqueness of Periodic Solutions For A Class of Discrete Time Delay Systems in A Finite Morrey Space
下载PDF
导出
摘要 分析有限Morrey空间内离散时滞系统周期解唯一性问题,为该类离散时滞系统控制的稳定性和收敛性提供理论基础。采用微分方程求解和Lyapunove泛函方法进行系统模型构建和特征解求取,构建五次波动微分方程,结合Lyapunov泛函进行有限Morrey空间内离散时滞系统的稳定性分析,在能量超临界情况下,构建有限Morrey空间内一类离散时滞系统的Terminal滑模面,得到在有限时间域内系统具有稳定周期解唯一性条件,进行了周期解的存在性、唯一性和渐进收敛性的判决分析和推导证明,为时滞控制提供理论基础。 The uniqueness of periodic solutions for discrete time delay systems in finite Morrey space isanalyzed, which provides a theoretical basis for the stability and convergence of the control of thediscrete time delay systems. Using differential equation solving and Lyapunove functional method systemmodel construction and characteristic solution obtained, the construction of five times the wavedifferential equation, combined with the Lyapunov functional limited Morrey spaces of discrete timedelaysystems stability analysis, finite Morrey space within a class of discrete when lag system terminalsliding surface, obtained in finite time domain in the system has stable periodic solution uniquenesscondition, the periodic solution existence, uniqueness and gradual convergence of decision analysis anddeduction proof, delay control and provide a theoretical basis.
作者 杨春华 杨玲 Yang Chunhua;Yang Ling(Department of Mathematics,Baoshan College,Baoshan Yunnan 678000,China)
出处 《科技通报》 北大核心 2016年第7期8-13,共6页 Bulletin of Science and Technology
关键词 有限Morrey空间 离散时滞系统 周期解 唯一性 finite Morrey space discrete time delay systems periodic solution uniqueness
  • 相关文献

参考文献2

二级参考文献24

  • 1张庆林.广义大系统的分散控制与鲁棒控制[M].西安:西北工业大学出版社,1997..
  • 2Pawlak Z. Rough-Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Pulolisher, 1991.
  • 3Pawlak Z. Rough sets: Some extension. Information Sci- ences, 2007, 177(1): 28-40.
  • 4Mi J S, Wu W Z, Zhang W X. Approaches to knowledge re- duction based on variable precision rough set model. Informa- tion Sciences, 2004, 159(3-4): 255-272.
  • 5Inuiguchi M. Several approaches to attribute reduction in variable precision rough set model//Proceeding of the Model ing Decisions for Artificial Intelligence. Tsukuba, Japan, 2005:215-226.
  • 6Su C T, Hsu J H. Precision in the variable precision rough sets model: An application. Omega, 2006(34) : 149-157.
  • 7Su Chao-Ton, Hua Jigh-Hwa. Precision parameters in the variable precision rough sets model:an application. The In- ternational Journal of Management Science, 2006, 34 (2) : 149-157.
  • 8Cheng Yu-Sheng, Zhang You-Sheng, Hu Xue-Gang. The relationships between variable precision value and knowledge reduction based on variable precision rough set model//Pro- ceedings of the RSKT2006. Chongqing, China, 2006.
  • 9Hong Tzung-Pei, Wang Tzu-Ting, Wang Shyue-Liang. Mining fuzzy β-certain and β-possible rules from quantitative data based on the variable precision rough set model. Expert Systems with Application, 2007(32) : 223-233.
  • 10Gang Xie, Jin Long-Zhang, Lai K K, Yu Lean. Variable precision rough set for decision-making - An application. International Journal of Approximate Reasoning, 2008, 49: 331-343.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部