期刊文献+

一种模块化神经网络的人耳识别方法

Ear recognition method based on modular neural networks
下载PDF
导出
摘要 提出了一种基于模块化神经网络的人耳识别方法。对人耳图像进行一系列的预处理后,采用PCA方法对图像进行特征提取。构建了模块化神经网络模型,并用分层遗传算法对该模型进行优化,选择训练阶段样本和测试阶段样本对人耳图像进行训练和测试,得出识别率。实验结果表明,基于模块化神经网络的人耳识别相对于传统的神经网络优化了设计参数,得到最优体系结构,提高了人耳识别率。 A new ear recognition method based on module neural network was presented in this paper. By using PCA method,the characteristic of the human ear image was extracted after a series of pretreatment on the ear image. The modular neural network model was built up and optimized by using hierarchical genetic algorithm.Training samples and testing samples were selected to train and test the human ear images,finally came up with recognition rate. The experimental results show that the ear recognition based on modular neural network optimizes the design parameters compared with the traditional neural network. The optimal system structure is obtained,and the human ear recognition rate accordingly improved.
作者 田莹 李林玲 TIAN Ying;LI Linling(School of Computer Software Engineering,University of Science and Technology Liaoning,Anshan 114051,China)
出处 《辽宁科技大学学报》 CAS 2016年第3期216-222,共7页 Journal of University of Science and Technology Liaoning
基金 辽宁省教育厅项目:基于2D合成图像的多姿态人耳识别(L2014115)
关键词 人耳识别 模块化神经网络 分层遗传算法 ear recognition modular neural network hierarchical genetic algorithm
  • 相关文献

参考文献1

二级参考文献4

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部