期刊文献+

一种强化互学习的人工蜂群算法 被引量:4

Enhanced mutual learning artificial bee colony algorithm
下载PDF
导出
摘要 为了解决基本蜂群算法存在的收敛速度慢、易陷入局部最优等问题,并提高算法在探索和开发方面的寻优性能,提出一种改进的蜂群算法,称为强化互学习的人工蜂群算法(EMLABC),针对不同种类蜜蜂分别采用不同的搜索策略,首先对于雇佣蜂通过采用提高交叉变动学习频率以及同时面向多个较优近邻学习的机制来增强算法的全局探索能力并且避免早熟;其次针对跟随蜂采用深化的互学习策略,使新生子代保持倾向于在潜在更优区域进行搜索,进而提高算法的收敛性能和精度。在16个标准测试集函数和基本蜂群算法以及最近几个变种进行对比测试,结果表明EMLABC在收敛速度、准确寻优能力和稳定性上都有显著的提升。 In order to deal with the basic ABC algorithm for its slow convergence, tending to get stagnation on local optima,and further to improve its searching efficiency in exploration and exploitation, this paper proposes an improved artificialbee colony algorithm called Enhanced Mutual Learning ABC algorithm(EMLABC), applying different kind of honeybees with distinguished strategies, firstly for employed bees, by exemplifying mutation perturbation learning frequencyand basing on multi comparatively prior neighbors for learning, to enhance global exploration and avoid premature, andthen applying onlooker bees with extensive mutual learning strategy, which can enable the new candidate solutions morelikely to search in potential better space, thus to achieve fast convergence and accuracy. The experiments are conducted ona benchmark suite of 16 unimodal and multimodal test functions, the results demonstrate significant improvements ofEMLABC when compared with the basic ABC algorithm and several recent variants of ABC algorithm.
作者 罗浩 刘宇 LUO Hao;LIU Yu(School of Software, Dalian University of Technology, Dalian, Liaoning 116024, China;Institute of IT Service Engineering and Management, Dalian University of Technology, Dalian, Liaoning 116024, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第16期23-29,45,共8页 Computer Engineering and Applications
基金 国家自然科学基金委员会与中国民用航空局联合资助项目(No.U1233110) 中央高校基本科研业务费(No.DUT13JR01)
关键词 人工蜂群算法 群体智能 数值函数优化 互学习 artificial bee colony swarm intelligence numerical function optimization mutual learning
  • 相关文献

参考文献20

  • 1Karaboga D.An idea based on honey bee swarm fornumerical optimization,technical report-tr06[R].ErciyesUniversity,Engineering Faculty,Computer EngineeringDepartment,2005.
  • 2Apalak M K,Karaboga D,Akay B.The artificial bee colonyalgorithm in layer optimization for the maximum fundamentalfrequency of symmetrical laminated compositeplates[J].Engineering Optimization,2014,46(3):420-437.
  • 3杨进,马良.蜂群优化算法在车辆路径问题中的应用[J].计算机工程与应用,2010,46(5):214-216. 被引量:18
  • 4Gao K Z,Suganthan P N,Chua T J,et al.A two-stageartificial bee colony algorithm scheduling flexible job-shopscheduling problem with new job insertion[J].Expert Systemswith Applications,2015,42(21):7652-7663.
  • 5Karaboga D,Okdem S,Ozturk C.Cluster based wirelesssensor network routing using artificial bee colony algorithm[J].Wireless Networks,2012,18(7):847-860.
  • 6Habbi H,Boudouaoui Y,Karaboga D,et al.Self-generatedfuzzy systems design using artificial bee colony optimization[J].Information Sciences,2015,295:145-159.
  • 7Kennedy J.Particle swarm optimization[M].Encyclopediaof machine learning.US:Springer,2010:760-766.
  • 8Storn R,Price K.Differential evolution-a simple and efficientheuristic for global optimization over continuousspaces[J].Journal of Global Optimization,1997,11(4):341-359.
  • 9Zhu G,Kwong S.Gbest-guided artificial bee colony algorithmfor numerical function optimization[J].Applied Mathematicsand Computation,2010,217(7):3166-3173.
  • 10Banharnsakun A,Achalakul T,Sirinaovakul B.The bestso-far selection in artificial bee colony algorithm[J].AppliedSoft Computing,2011,11(2):2888-2901.

二级参考文献4

共引文献17

同被引文献25

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部