期刊文献+

基于SRank的社交网络影响力分析

Analysis of social networks influence based on SRank
下载PDF
导出
摘要 针对社交网络中用户影响力的评价问题,提出了一种基于SRank的评价算法。基于从社交网络中收集的大规模数据集,结合最近社会学理论研究成果分析PageRank及其改进算法应用于此场景中的不足。在此基础上总结社交网络中信息传播的规律,将用户与社交网络的关系强度定义为用户的人缘值,用来表示用户作为粉丝的信息再传播能力。然后提出了一个通过预测用户信息传播能力大小来分析和度量用户影响力的SRank用户影响力模型。在同样的数据集下相对于PageRank及其改进算法,SRank用户影响力模型获得了更好的影响力预测结果。基于大规模数据的实验结果表明,提出的方法是较为有效的。 An evaluation algorithm based on SRank is proposed to evaluate the users’influence in social networks. Aftercollecting large scale data sets and recent theoretical research results of sociology, there lie some disadvantages in theapplication of PageRank user influence model. Besides, the rules of information in social networks is analyzed, it is definedthat the strength of relationship between the user and the social network as the Value of User Popularity(VUP)which isused to describe user’s information re communication ability. It is put forward a user influence model based on SRankalgorithm which can measure user influence depending on predicting user information communication ability. Comparedwith PageRank user influence model, the SRank algorithm user influence model gets better predicting results on user influence.So the new model is effective.
作者 任留名 李廉 唐敏龙 REN Liuming;LI Lian;TANG Minlong(College of Computer and Information, Hefei University of Technology, Hefei 230009, China)
出处 《计算机工程与应用》 CSCD 北大核心 2016年第16期95-99,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61305064) 国家高等学校学科创新引智计划("111")(No.B14025) 国家科技支撑计划(No.2013BAH19F01) 教育部直属高校外国文教专家年度聘请计划-学校特色项目(No.TS2013HFGY031)
关键词 用户影响力 PAGERANK 社会计算 幂律分布 150定律 user influence PageRank social computing power-law distribution rule of 150
  • 相关文献

参考文献15

  • 1Granovetter M S.The strength of weak ties[J].AmericanJournal of Sociology,1973,78(2):1360-1380.
  • 2Krackhardt D,Krackhardt D.The strength of strong ties:The importance of philos in organizations[J].Networks &Organizations,1992:216-239.
  • 3Lazarsfeld P F,Berelson B,Gaudet H.The people’s Choice[J].Eco-Architecture:Harmonisation between Architecture andNature,1944,18.
  • 4Burt R S.Structural Holes:The social structure of competition[J].Social Science Electronic Publishing,1994.
  • 5杜修平,酆爱文.150N时代探析[J].技术与创新管理,2011,32(4):435-438. 被引量:7
  • 6Garg N P,Favre S,Salamin H,et al.Role recognition formeeting participants:an approach based on lexical informationand social network analysis[C].ACM InternationalConference on Multimedia,2008:693-696.
  • 7余学军.六度分割理论成就SNS[J].信息网络, 2009(11):37-37.
  • 8曹玖新,吴江林,石伟,刘波,郑啸,罗军舟.新浪微博网信息传播分析与预测[J].计算机学报,2014,37(4):779-790. 被引量:109
  • 9Kleinberg J M.Navigation in a small world[J].Nature,2000,406(6798).
  • 10László B A.Emergence of scaling in complex networks[M].Handbook of graphs and networks:from the genome tothe internet.[S.l.]:Wiley-VCH Verlag GmbH & Co.KGaA,2005:69-84.

二级参考文献52

  • 1周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 2Dunbar's number [ Z ] . http ://en. wikipedia, org/wiki./ Dunbar% 27s_number.
  • 3马尔科姆·格拉德威尔.引爆流行[M].北京:中信出版社,2009.
  • 4Bruce Schneier. Security, Group Size, and the Human Brain[J]. IEEE Security and Privacy,2009,7(4) :88.
  • 5马尔科姆·格拉德威尔.150的力量.青年文摘,2009,:12-12.
  • 6肖恩.Facebook人均好友120人SNS难扩人类社交规模[Z].[2009-03-02]http://tech.sina.tom.cn/i.2009-03-02/07232868882.shtml.
  • 7Don Reisinger. Sorry, facebook friends : our brains can' t keep up[Z]. [2010-01 -25].
  • 8Christopher Allen. Dunbar, altruistic punishment, and meta-moderation[ Z]. [ 2005 - 3 - 17 ]. http://www, li- fewithalacrity, com/2OOS/O3/dunbar_ahmist, html.
  • 9Kittyly. 250 定律[ Z]. [2009 - 6 - 15 ]. http://bbs. icxo. corn/thread -256888 - 1 - 1. html.
  • 10Tweet G.Counting the number of tweets[EB/OL].(2010). [20 ! 2-02].http ://popacular.com/gigatweet.

共引文献302

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部